
© 2025 The Authors. Published under a Creative Commons  
Attribution 4.0 International (CC BY 4.0) license.

Imaging Neuroscience, Volume 3, 2025
https://doi.org/10.1162/IMAG.a.963

Research Article

1. INTRODUCTION

The ability to generalize previously acquired information 

to novel scenarios is essential for adaptive behavior in a 

changing world. While this hallmark of human cognition 

underpins learning and problem-solving across various 
cognitive domains (Behrens et al., 2018; Dehaene et al., 
2022; Frankland & Greene, 2020; Gärdenfors, 2004; 
Schwartenbeck et al., 2023), this capacity is particularly 
clearly illustrated by language. When encountering the 
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novel word “un-reject-able-ish” for the first time, we can 
swiftly infer its meaning by generalizing from the known 
elements and integrating them according to abstract 
relational structure rules, such as the sequential arrange-
ment of word parts (Tamminen et  al., 2015; Zheng, 
Petukhova, et al., 2024). We excel at combining linguistic 
building blocks such as morphemes and words to form 
larger structures like phrases and sentences, thereby 
flexibly conveying an infinite array of thoughts and ideas. 
The generation of linguistic meaning relies not only on the 
constituent parts, but more importantly, also on the 
abstract relational structure rules based on which they 
are combined (Fodor, 1975; Fodor & Pylyshyn, 1988; 
Frege, 1892; Martin, 2016; Partee, 2008). Consider the 
sentences “The cat chased the mouse” and “The mouse 
chased the cat”. Despite sharing identical linguistic build-
ing blocks, they convey distinct meanings. What neural 
mechanisms enable us to infer novel compositional 
meaning based on such rules? Does our brain represent 
abstract rules to facilitate meaning generalization, and if 
so, which circuits are recruited?

In cognitive neuroscience, extensive research has 
been dedicated to understanding how our brain orga-
nizes knowledge to guide flexible behavior. An influential 
line of inquiry has focused on how this organization is 
achieved through learning simplified and abstract repre-
sentations of the world, formatted as cognitive maps 
(Constantinescu et al., 2016; Moser et al., 2008; O’Keefe 
& Nadel, 1978; Solomon et  al., 2019; Tolman, 1948; 
Zheng, Hebart, et al., 2024). These relational knowledge 
structures allow us to infer associations that have not 
been directly experienced, and to generalize those 
abstract structures to novel situations (Bein & Niv, 2023; 
H. Eichenbaum & Cohen, 2014; Piaget, 1929; Preston & 
Eichenbaum, 2013). In a recent study, Schwartenbeck 
et al., (2023) investigated the neural representations and 
mechanisms that enable compositional generalization in 
the domain of vision. Participants solved compositional 
problems by inferring the relational positions of building 
blocks in a visual silhouette (e.g., a building block on top 
of vs. below another building block). Using fMRI, they 
found generalizable, relational configurations of visual 
building blocks to be represented in a medial prefrontal-
hippocampal network. The same network has been 
shown to be recruited during various other forms of gen-
eralization, ranging from discovering a shortcut in spatial 
navigation (Epstein et  al., 2017; Jacobs et  al., 2013; 
Moser et al., 2008; O’Keefe & Nadel, 1978; Tolman, 1948), 
to “joining the dots” between events (Barron et al., 2013, 
2020; Garvert et al., 2023; Morton et al., 2020), and to 
inferring unknown relationships in social contexts (Park 
et al., 2020, 2021). It has been proposed that neural cog-
nitive map-like representations in circuitry connecting the 

hippocampus with the medial frontal cortex can serve as 
a universal knowledge code for generalization and novel 
inference across multiple cognitive domains (Behrens 
et  al., 2018; Bellmund et  al., 2018; Stachenfeld et  al., 
2017; Whittington et al., 2018).

In language sciences, the investigation of composi-
tional generalization has, however, primarily implicated 
neural networks other than this medial prefrontal-
hippocampal network. Compositionality—the ability to 
combine lexical building blocks to create linguistic 
meaning (Fedorenko et  al., 2016; Gwilliams, 2020; 
Hagoort, 2019a, 2019b; Hagoort & Indefrey, 2014; 
Martin, 2020; Pylkkänen, 2019; Zaccarella et al., 2017; 
Zaccarella & Friederici, 2015)—is thought to rely on left-
lateralized, language-specific networks, particularly in 
regions such as the left inferior frontal gyrus (Bozic et al., 
2007; Bozic & Marslen-Wilson, 2010; Hagoort, 2005, 
2016; Leminen et al., 2019; Nevat et al., 2017) and the 
left anterior temporal lobe (Baron & Osherson, 2011; 
Brennan et al., 2012; Flick et al., 2018; Pylkkänen, 2019). 
This suggests that compositional inference in language 
might engage neural systems distinct from those 
involved in compositional processes in relational mem-
ory, action planning and vision, challenging the notion 
that hippocampal-based representational codes are 
domain-general.

In the current preregistered fMRI study, we aimed to 
test this hypothesis by investigating the neural mecha-
nisms underlying the ability to infer novel compositional 
word meanings based on abstract relational structure 
rules. Specifically, we aimed to assess whether rela-
tional structure-based composition in language recruits 
the medial prefrontal-hippocampal network that has 
also been implicated in action planning, visual composi-
tion, and relational memory (Baram et al., 2021; Barron 
et al., 2020; Schwartenbeck et al., 2023). To this end, we 
employed a recently developed language-learning para-
digm where participants generalize abstract rules to 
infer novel compositional meanings (Zheng, Petukhova, 
et  al., 2024). Unlike existing procedures that decode 
neural representations during natural language compre-
hension (e.g., Huth et al., 2016), this controlled experi-
mental paradigm uses a semi-artificial language to 
isolate generalizable abstract rules for meaning compo-
sition and to probe core cognitive mechanisms that are 
otherwise difficult to disentangle in natural language. In 
this task, participants infer abstract rules from linguistic 
exemplars, then use these rules to derive the meanings 
of novel compositional words. According to these rules, 
word meaning depends on the sequential relation 
between the stem and the affix (i.e., pre- vs. post-stem). 
The paradigm was designed to capture (i) the observa-
tion that sequential order plays a key role in composi-
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tionality in natural language (Beyersmann & Grainger, 
2023; Crepaldi et al., 2013, 2016), but furthermore, also 
(ii) the relational structure-dependent nature of compo-
sitional generalization in non-linguistic domains associ-
ated with hippocampal-medial frontal cortical circuitry 
(Baram et  al., 2024; Barron et  al., 2020; Garvert  
et al., 2023; Morton et  al., 2020; Park et  al., 2021; 
Schwartenbeck et al., 2023).

2.  METHODS

The study was approved by the local ethics committee 
(METC Oost-Nederland, 2014/288) and conducted in 
accordance with the Declaration of Helsinki. All partici-
pants provided written informed consent and received 
monetary compensation. The study was preregistered at 
AsPredicted (https://aspredicted​.org​/mk5i2​.pdf).

2.1.  Participants

Given the lack of prior data for this novel fMRI paradigm, 
we conducted a prior power analysis assuming a medium 
effect size (Cohen’s d = 0.5). This yielded a target sample 
size of 34 participants to achieve 80% power at an alpha 
of 0.05. To ensure that we retain sufficient data after 
applying standard MRI quality control and behavioral 
exclusion criteria, we planned a overshoot in recruitment. 
Specifically, we collected data from 43 right-handed, 
healthy Dutch native speakers (Meanage = 23.1, SDage = 4.3, 
range 18–33, 27 women, 15 men, 1 other). All participants 
had normal or corrected-to-normal vision. No participants 
reported any current or previous psychiatric or neurologi-
cal disorders, nor MRI contraindications, such as unre-
movable metal parts in the body and claustrophobia. 
Seven participants were excluded due to various reasons, 
including scanner failure (N = 1), poor fMRI data quality 
(N = 3, see criteria in MRI data acquisition and prepro-

cessing), falling asleep in the scanner (N = 1), or failure to 
learn to generalize the abstract rules (N = 4; 2 of which 
overlap with the ones with poor fMRI data, see criteria in 
Behavioral analysis), resulting in a dataset of 36 partici-
pants. In addition, 6 participants were excluded due to an 
unexpected error in the stimulus list in the scanning ses-
sion. This left us with a final sample of 30 participants 
(Meanage = 23.0, SDage = 3.5, range = 18–30, 19 women, 
11 men), slightly smaller than the planned target (N = 34).

2.2.  Experimental paradigm

To quantify participants’ ability to construct composi-
tional word meaning by generalizing abstract relational 
structure rules, we employed an experimental paradigm 
where participants learned a semi-artificial language fea-
turing various rules of compositions (Zheng, Petukhova, 
et al., 2024). A schematic diagram of the experiment is 
provided in Figure 1.

2.2.1.  Design

During a pre-scanning training phase, participants were 
exposed to pairs of compositional pseudo-words along 
with their experimentally assigned meanings (Fig. 1A, Sup-
plemental Material 1). Each of these compositional 
pseudo-words comprised a known stem (e.g., “good” in 
“good-kla”) and an unknown affix (e.g., “kla”). Going 
beyond previous work on linguistic generalization (e.g., 
Tamminen et al., 2015), we designed the experiment such 
that meaning inference required the processing of the rela-
tional structure of the pseudo-word. Specifically, we 
manipulated the mapping of the meaning to the affix based 
on its sequential position: e.g., “-kla” as a suffix meant “the 
opposite”, whereas “kla-” as a prefix meant “young ver-
sion”. These position-dependent rules allowed partici-
pants to compose unique meanings based on different 

Fig. 1.  Experimental design (A, C, E) and behavioral results (B, D, F). (A) Participants learned and memorized artificial, 
compositional words. These compositional pseudo-words consisted of a known stem and an unknown affix. The affix 
alters the word meaning depending on its position (pre- vs. post- stem). Importantly, the abstract relational structure rules 
were never made explicit to the participants. (B) Box plots of participant’s choice performance in a memory task, where 
they recalled the meaning of the learned pseudo-words. (C) We tested participants’ knowledge with novel, compositional 
pseudo-words using an fMRI adaptation paradigm, in which the prime pseudo-words were always followed by a target, 
real word. The pseudo-word primes were either congruent or incongruent with the sequential order specified by the 
abstract rules, or belonged to a third condition in which the primes lacked interpretable meaning, regardless of order.  
The target word was always a matched synonym to the congruent prime word. (D) Boxplots of participants’ responses  
in the fMRI task across three experimental conditions, on the 10% probe trials on which they indicated with a left or 
right button press whether the prime words did or did not match the target words in terms of their meaning. (E) After 
the fMRI session, we explicitly asked participants to evaluate the meaningfulness of the novel compositional words.  
(F) Boxplots of participants’ responses in the posttest across three experimental conditions, where they indicated whether 
the pseudo-words are meaningful or not. The actual stimuli used in the experiment were in participants’ native language, 
Dutch (Supplementary Material 1). For (B, D, F), the thick horizontal line inside the box indicates the group median, and 
the bottom and top of the box indicate the group-level first and third quartiles of each condition. Each dot represents one 
participant. The black lines connect the group median across conditions.

https://aspredicted.org/mk5i2.pdf
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sequential combinations of the affixes with the stems. Cru-
cially, while the participants could infer the rules from the 
exemplars, these rules were never made explicit to them.

To test participants’ knowledge of abstract relational 
structure rules, after training, we presented a new set of 
compositional pseudo-words which they had never 
encountered before (e.g. “short-kla” and “kla-short”) and 
asked them to imagine the meanings of the words while 
recording fMRI. These novel pseudo-words were 
designed to either create conflict or not based on the 
application of the abstract rules regarding sequential 
order for meaning inference. For example, for “short-kla”, 
“-kla” as a suffix means “the opposite”, and the opposite 
of short is “long”. Conversely, for “kla-short”, “kla-” as a 
prefix means “the young version of”, and it is much more 
difficult to infer the meaning of the young version of 
“short”. These two types of pseudo-words—order-
congruent and order-incongruent—were presented as 
primes and paired with real-word targets that were always 
synonyms of the congruent meaning (e.g., “short-kla” or 
“kla-short” followed by “long”; Fig. 1C).

We further included a third condition of pseudo-words, 
where the stems were combined with alternative affixes 
in such a way that the combination yielded uninterpreta-
ble meanings regardless of the position of the affix (e.g., 
ran-short = the color of short; short-ran = the person who 
engages with short). As a result, these compositional 
words did not correspond to the target word meanings 
(e.g., ≠ long). Note that while a given affix was paired 
congruently with several different stems, each stem was 
congruently paired with only a single affix (and also 
appears in various control conditions).

The setup was optimized for capturing neural adapta-
tion in fMRI and allowed us to assess activity in neural 
circuits commonly associated with novel inference and 
abstract rule-based generalization.

2.2.2.  Procedure

Both the pre-scanning training and posttest were carried 
out in a sound-proof testing booth adjacent to the MRI 
room. The experiment was run using the software Pre-
sentation (Version 20.2, Neurobehavioural System Inc, 
Berkeley, U.S.).

2.2.2.1.  Pre-scanning training.  Participants studied the 
training set of 30 compositional pseudo-words in a self-
paced manner. Every compositional word was presented 
together with its synonym meaning and an example sen-
tence using the word in context, till a maximum of 15 s or 
participants pressing to continue. After viewing all the 
words, participants completed a multiple-choice test 
where on each trial, they were given a synonym meaning 

and asked to choose a matched compositional word. 
Each compositional word was presented once in a learn-
ing block and once in a memory test. All the words were 
presented in a pseudorandom order, with the same affix 
form or affix position repeated on no more than three 
consecutive trials. The learning blocks and memory tests 
were interleaved and repeated for four times, with 30 tri-
als per block.

2.2.2.2.  Scanning session.  Next, participants went 
through a testing session in the MRI scanner, where they 
were presented with the testing set of novel (i.e., never 
previously seen) compositional pseudo-words (primes), 
paired with real-word targets that were either matched or 
unmatched synonyms. Participants were asked to imag-
ine the meaning of the words presented on the screen.

Each prime word was presented on the screen for 
1500 ms, followed by a jittered screen of “***”. The target 
word was then presented on the screen for 1500 ms, fol-
lowed by another jittered screen of a fixation. Then, the 
next trial started. Both jittered intervals were generated 
from a truncated exponential distribution with a mean of 
2 s (range = 1.5 - 5 s). All prime words and target words 
were presented in black, in the center of a white screen. 
Each block started with a 2  s fixation. All the pairs of 
prime and target were presented in a pseudorandom 
order, with the following requirements: (1) the same affix 
form or affix position repeated on maximally three con-
secutive trials; (2) the same condition repeated maximally 
for three consecutive trials; (3) The same stem repeated 
at least five trials apart.

To ensure that participants paid attention to the prime 
words, we included probe questions on 10% of the trials 
where participants needed to indicate if the prime 
pseudo-word shared the same meaning as the target 
word (“probe trials”). They responded by pressing the left 
(“yes”) or the right button (“no”) on the button box using 
their right index finger or middle finger, respectively. The 
probe questions stayed on the screen for a maximum of 
10 s or until participants responded. The task then pro-
ceeded with a jittered fixation followed by the next trial.

The task consisted of three blocks in total, with each 
prime-target pair in each condition presented once in 
each block. Prior to going into the scanner, participants 
went through a practice block in the behavioral booth, 
where they were familiarized with the task and received 
feedback on their performance.

2.2.2.3.  Posttest.  In a post-test, participants were 
asked whether the compositional pseudo-words they 
had seen in the scanning session were meaningful, and if 
so, what they meant.

The whole session took about 3 h.
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2.3.  MRI data acquisition and preprocessing

2.3.1.  Data acquisition

The MRI experiment was performed on the institute’s 3T 
MAGNETOM Prisma[Fit] MR scanner (Siemens AG, 
Healthcare Sector, Erlangen, Germany) using a product 
32-channel head coil. Out of the 30 participants in the 
final sample, 15 were scanned in a Prisma scanner and 
15 were in a PrismaFit scanner. The assignments of par-
ticipants were randomized. Despite the fact that the two 
scanners were theoretically the same, we additionally 
validated our results by including scanner as a second-
level covariate. Our results were unchanged when adding 
scanner-type as covariance.

T2*-weighted blood-oxygen-level-dependent (BOLD) 
images were acquired in three blocks, recorded using a 
whole-brain multiband accelerated echo-planar imaging 
(EPI) sequence [TR, 1500  ms; TE, 39.6 ​ms; multiband 
acceleration factor, 4; flip angle, 75°; slice matrix size, 
104  × 104; voxel size, 2.0  mm isotropic; FoV, 210  × 
210 ×  136 mm; bandwidth: 2090 Hz/px; echo spacing: 
68 ms]. A high-resolution structural image (1 mm isotro-
pic) was acquired using a T1-weighted 3D magnetization-
prepared rapid gradient-echo sequence (MP-RAGE; TR, 
2300  ms; TE, 3.03  ms; flip angle, 8°; FoV, 256  × 
256 × 192 mm).

2.3.2.  MRI quality control

The MRI quality control was performed using MRIQC 
22.0.6. (Esteban et al., 2017). Means of framewise dis-
placement (both in mm and in percentage of timepoints), 
temporal SNR, and DVAR for functional images were 
computed per participant per block based on the image 
quality metrics. Blocks with any of these values larger 
than 2.5 SD from the group mean were excluded (or 
smaller than 2.5 SD for temporal SNR). Individuals with 
two or more blocks excluded were also excluded from 
the dataset (N = 3).

2.3.3.  Preprocessing

All MRI data were preprocessed using fMRIPrep 21.0.2 
(Esteban, Blair, et al., 2018; Esteban, Markiewicz, et al., 
2018; RRID:SCR_016216), which was based on Nipype 
1.6.1 (Gorgolewski et al., 2011, 2018; RRID:SCR_002502). 
Information about the preprocessing of anatomical and 
functional data was retrieved directly from fMRIPrep and 
provided in Supplementary Material 2.

In addition, we used Statistical Parametric Mapping 
12 (SPM12; Wellcome Trust Centre for Neuroimaging, 
https://www​.fil​.ion​.ucl​.ac​.uk​/spm/) to spatially smooth 

the final preprocessed BOLD time series with a 6  mm 
FWHM kernel.

2.4.  Behavioral analysis

2.4.1.  Preprocessing

As a sanity check, we confirmed that all participants 
scored above chance-level (25%) in the memory test 
after the last block of learning and recalled more than half 
of the learned words in the posttest.

Participants’ written responses to the pseudo-word 
meaning in the posttest were coded as (1) matching the 
synonym, (2) meaningless, (3) creative, unexpected 
answers (e.g., when one consider a pseudo-word 
“human-kla” from the uninterpretable condition, the 
opposite of human, to be “animal”), and (4) unexpected 
but incorrect answers (e.g., when one confused the 
meaning of different affix forms, mistook “warm-ran” as 
“warm-kla‘ and reported the meaning to be “cold”, the 
opposite of warm). We excluded the unexpected cases 
from the analysis, which concerned 4.8% of the trials. 
Due to the paired presentations in the priming task (e.g., 
“short-kla” always followed by “long”), participants who 
judged a pseudo-word as meaningful in the post-test 
typically provided the target synonym as its inferred 
meaning (e.g., responding that “short-kla” meant “long”) 
in open-ended questions (Kendall’s τ = 0.98, p <  .001). 
Therefore, we used the second measure—the percent-
age of inferred meaning matching the synonym word—as 
an indicator of participants’ explicit inference, as it offered 
greater certainty than a binary choice. Based on the post-
test, we excluded participants who failed to learn the 
abstract rules (N = 4, of which 2 were the same partici-
pants excluded due to MRI quality control). They were 
defined as those who consider more than half of the 
pseudo-words in the uninterpretable condition to be 
meaningful, or more than half of the pseudo-words in the 
congruent condition to be meaningless.

2.4.2.  Statistical analyses

Behavioral data were submitted to generalized linear 
mixed models with the glmmTMB package (Version 
1.9.11, Brooks et al., 2017) in R (Version 4.1.0; R Core 
Team, 2017). For the analysis of the probe trials and the 
post-test, we included experimental condition (order-
congruent vs. order-incongruent vs. uninterpretable) as a 
predictor. Participants and items were included as ran-
dom effects, with condition as a random slope for partic-
ipants. The significance of condition was assessed using 
the Type II Wald Chi-square test. We used the multcomp 
package (Version 1.4.17, Hothorn et al., 2008) to conduct 

https://www.fil.ion.ucl.ac.uk/spm/
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pairwise comparisons among the three experimental 
conditions.

2.5.  fMRI analysis

fMRI data were analyzed using SPM12, the Matlab-based 
Representational similarity analysis (RSA) toolbox (Nili 
et  al., 2014, https://github​.com​/rsagroup​/rsatoolbox​
_matlab) and custom scripts written in MATLAB R2022b 
(Mathworks Inc.; https://nl​.mathworks​.com​/products​
/matlab​.html).

2.5.1.  Univariate analysis

To identify the neural BOLD signals associated with the 
compositional process, we compared fMRI responses 
during order-congruent versus order-incongruent primes, 
when participants first encountered the novel pseudo-
words. To uncover the neural representations of the com-
posed meanings, we exploited the phenomenon of fMRI 
adaptation (Barron et al., 2016; Grill-spector et al., 2006). 
This effect refers to a reduced neural response when the 
same neural population is repeatedly activated, with the 
degree of suppression scaling with the similarity between 
neural representations. Notably, suppression can also 
occur when different stimuli that share a relevant feature 
(e.g., semantic meanings) are presented in close succes-
sion (“cross-stimulus suppression”). Based on this prin-
ciple, we reasoned that in brain regions involved in 
representing word meanings, neural response should be 
suppressed upon repeated exposure to the same seman-
tic content—a well-established effect in semantic prim-
ing paradigms (Matsumoto et  al., 2005; Wagner et  al., 
1997; Wible et al., 2006). In our task, neural signals at the 
time of the target would be suppressed to a greater 
degree when that target was preceded by a order-
congruent prime word that shared the same meaning, 
compared with an ambiguous, order-incongruent prime 
with reversed structural order, reflecting the effect of 
abstract rules.

An event-related generalized linear model (GLM) was 
used to model both the prime and the target events, and 
contained separate onset regressors for each of the four 
experimental conditions (i.e., congruent, incongruent, 
and two times uninterpretable conditions—the latter 
counterbalanced to ensure the same amount of trials per 
affix type). The GLM also contained an onset regressor 
for the probe trials and a button press regressor as 
regressors of no interest. All regressors were convolved 
with a canonical hemodynamic response function. 
Because of the sensitivity of the blood oxygen level-
dependent signal to motion and physiological noise, we 
included in the GLM the framewise displacement, six 

rigid-body motion parameters (three translations and 
three rotation), six anatomical component-based noise 
correction components (aCompCorr), and all the cosine 
regressors estimated by fmriprep as confound regres-
sors for denoising. Each block was modeled separately 
within the GLM. The contrast images of all participants 
were then analyzed as a second-level random effects 
analysis.

Our preregistration included a planned contrast com-
paring the order-congruent/incongruent conditions to the 
uninterpretable condition for successful inference. How-
ever, to foreshadow the results, the participants did not 
distinguish between the order-incongruent and uninter-
pretable conditions in their behavioral responses. Given 
this observation, we focused the main fMRI analysis on 
the congruent and incongruent conditions. As a valida-
tion for successful vs. unsuccessful interference, analy-
ses of prime- and target-related activities for the 
congruent versus uninterpretable contrast are provided 
in Supplementary Material 5C.

Based on previous work on nonlinguistic composition 
and generalization, particularly in the domain of rela-
tional memory (Barron et al., 2020; Garvert et al., 2023; 
Jacobs et  al., 2013; Morton et  al., 2020; Park et  al., 
2021; Schwartenbeck et  al., 2023), we hypothesized 
that the process of composing novel meanings elicits 
activity in a circuit connecting the hippocampal forma-
tion with the medial prefrontal cortex. To test the engage-
ment of this network, we conducted additional analyses 
using small volumes correction (SVC) within an anatom-
ically defined ROI combining the hippocampal formation 
(incl. hippocampus, entorhinal cortex, subiculum) and a 
functionally defined medial prefrontal cortex (mPFC) ROI 
(Schwartenbeck et al., 2023). To examine the role of the 
language network in meaning inference, we performed 
additional SVC using two anatomically defined masks: 
the left inferior gyrus (IFG) and the left anterior temporal 
lobe (ATL). All ROIs are defined in Supplementary Materi-
als 3. We considered our results significant if they sur-
vived family-wise error (FWE) correction at the cluster-level 
of p < .05 within these masks. Activations in other brain 
regions were only considered if they survived whole-brain 
cluster-level FWE correction at p  <  .05. All statistical 
parametric maps visualized in the manuscript were 
thresholded at p < .001 uncorrected and unmasked solely 
for illustration.

2.5.2.  Multivariate representational similarity 
analysis

To decode the neural representations of both the 
abstract relational structure rules and the newly inferred 
word meanings at the time of prime, we adopted a 

https://github.com/rsagroup/rsatoolbox_matlab
https://github.com/rsagroup/rsatoolbox_matlab
https://nl.mathworks.com/products/matlab.html
https://nl.mathworks.com/products/matlab.html
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multivariate RSA approach (Kriegeskorte et  al., 2008; 
Nili et  al., 2014). Consider the compositional pseudo-
word “short-kla”: To compose its meaning, participants 
would represent the rule (“-kla” means “the opposite 
of”); moreover, provided successful composition, they 
would also represent the composed meaning (“short-
kla” means “long”). RSA allowed us to capture the rele-
vant neural representations by computing the neural 
representational dissimilarity matrices (RDMs) based on 
prime-related fMRI activity for each pseudo-word, ana-
lyzed through a whole-brain searchlight. We assessed 
whether these neural RDMs were explained by model 
RDMs (see below) that capture the similarities between 
these pseudo-words as a function of either their com-
posed meaning (derived from a word embedding model) 
or the rule that was used to compose them (by experi-
mental design).

2.5.2.1.  Neural RDMs.  To construct a neural RDM, we 
pairwise computed the similarities between multivariate 
neural activity patterns elicited by each pseudo-word 
primes and all others. Two primary types of neural RDMs 
were computed from the prime-related fMRI data: the 
first one irrespective of congruency, the second type 
modeling separately for the congruent and incongruent 
conditions. We expected both congruent and incongru-
ent conditions to engage abstract rule representations, 
whereas only congruent primes to lead to target meaning 
representations.

For the first RDM, we estimated neural activity for 
each prime using a GLM that included separate onset 
regressors for each of the 30 compositional pseudo-
words, collapsing across congruency (e.g., a single onset 
regressor for both “short-kla” and for “kla-short”). The 
resulting parameter estimates were used to compute a 
30 ×  30 neural RDM. For the second RDM, a separate 
GLM modeled the prime according to congruency (e.g., 
distinct onset regressors for “short-kla” and for “kla-
short”). This produced a second type of neural RDMs 
reflecting condition-specific representations, including 
the congruent-only RDM and the incongruent-only RDM.

Both GLMs included additionally regressors of no 
interest: one for all prime trials in the uninterpretable con-
dition, one for all the target words, one for the probe tri-
als, and one for button presses. All regressors were 
convolved with a canonical haemodynamic response 
function. The same confound regressors as in the univar-
iate analysis were included, and each block was modeled 
separately.

For rule representation, we began with the first neural 
RDM (i.e., including both congruent and incongruent 
primes), based on the expectation that both conditions 
engage abstract rule representations during the compo-

sitional process (i.e., at the time of the prime). Given the 
novel inference nature of the study, each pseudo-word 
was presented only once per block to avoid repetition. 
Collapsing across congruent and incongruent conditions 
also effectively doubled the number of trials per item 
across the three blocks. To further examine potential dif-
ferences in rule representations between the congruent 
and incongruent conditions, we used the second set of 
condition-specific neural RDMs.

We reasoned that during incongruent primes, partici-
pants may not be representing the target word meanings. 
Therefore, we used the second, congruent-only RDM to 
assess meaning representations

In addition, we computed a third neural RDM using 
target-related fMRI data from all conditions (i.e., including 
the uninterpretable condition). This RDM served to vali-
date the RSA procedure, specifically in relation to target 
word visual and meaning representations.

All RSA employed a whole-brain searchlight approach 
with a 7 mm spherical radius (approx. 180 voxels), with 
pairwise correlation distance (one minus Pearson cor-
relation coefficient) as the distance metric.

2.5.2.2.  Model RDMs.  We constructed two models of 
interest:

	 (1)	� Meaning Model (Fig. 3A): This model captures rep-
resentations of newly composed word meanings, 
arranged by their semantic similarities derived 
from a word embedding model (see below). For 
example, “long” (from “short-kla”) is more similar 
to “big” (from “small-kla”) than to “sad” (from “happy- 
kla”). We hypothesized that BOLD pattern similar-
ity in brain regions encoding these newly con-
structed meanings (e.g., “short-kla” means “long”) 
should reflect the semantic similarity of the com-
posed words (e.g., “long”).

	 (2)	� Rule Model (Fig. 3B): This model captures the rep-
resentation of abstract relational structure rules, 
where all compositional pseudo-words ending 
with “-kla” are more similar to each other than to 
pseudo-words with different affixes (e.g., “kla-”, 
“-ran”, or “ran-”). We expected that the BOLD pat-
terns from brain regions encoding abstract rules 
would be best explained by this model.

The meaning model was constructed using embed-
ding vectors for the 30 target words (e.g., “long” in “short-
kla = long”) from a word embedding model (Mandera 
et al., 2017). Word embedding represent words in a con-
tinuous vector space, where similar meanings have simi-
lar representations. To limit the degrees of freedom in 
selecting from the many available language models, we 
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opted for a relatively simple and well-established mod-
el—a Continuous Bag of Words (CBOW). This model has 
been shown to effectively predict human behavior of 
semantic priming in the Dutch-speaking population, con-
sistent with our sample. Specifically, Mandera et  al. 
(2017) evaluated several prediction-based language 
models against a large behavioral dataset. We used the 
best-fitting model there: CBOW model trained on the 
SONAR-500 text corpus (Oostdijk et al., 2013) and a cor-
pus of movie subtitles. Pairwise Pearson correlation dis-
tances between target word embeddings formed a 30*30 
distance matrix representing target meaning similarities. 
In addition, we constructed a stem meaning model based 
on the stems of the 30 prime words (e.g., “short” in 
“short-kla = long”).

For the rule model, we considered a 30*30 binary-
coded distance matrix, where rules were either the same 
(e.g., “short-kla” and “happy-kla”) or different (“short-kla” 
and “kla-dog”).

As a sanity check for the RSA procedure, we com-
puted two visual model RDMs to capture target word-
related visual patterns and confirmed that the visual 
aspects of word forms were represented in the visual cor-
tex (Supplementary Material 6A). Both RDMs reflect the 
visual similarity of target words presented on the screen: 
(1) Levenshtein distance, calculated using the “stringdist” 
library (van der Loo, 2014) in R; (2) Pixel-wise Euclidean 
distance between individual words. As expected, these 
two RDMs were highly correlated (Kendall’s τ  =  0.57, 
p < .001).

2.5.2.3.  Statistics.  Within each searchlight sphere for 
each participant, we compared the model RDMs with the 
neural RDMs using Kendall’s rank correlation. Both the 
searchlight analysis of the neural RDMs and the compar-
ison with the model RDMs were conducted using the 
Matlab-based RSA toolbox (Nili et al., 2014). The result-
ing correlation coefficients were submitted to a one-
sample t-test (i.e., contrasting the obtained correlation 
against zero) using SPM12. Statistical significance was 
assessed using cluster-inference with a cluster-defining 
threshold of p < .001 and whole-brain cluster-level FWE 
correction at p < .05.

Additionally, we conducted ROI-based RSA using the 
same hippocampal mask and the left IFG mask as in the 
univariate analysis. For each structural ROI, we followed 
the same procedure as the searchlight analysis, with first-
level coefficients submitted to a group-level one-sample 
one-side t-test.

To estimate the explainable variance in the neural 
data—that is, the maximum correlation any model could 
reasonably achieve given the noise in the data—we cal-
culated the lower bound of the noise ceiling using a 

leave-one-participant-out approach. For each partici-
pant, we correlated their neural RDM with the average 
neural RDM of all the other participants and then aver-
aged these values across participants to obtain a conser-
vative estimate of the noise ceiling. The noise ceiling was 
not used for statistical inference, but served as a descrip-
tive benchmark to evaluate model performance.

3.  RESULTS

3.1.  Generalization of abstract rules for novel 
meaning inference

The meanings of all pseudo-words were successfully 
learned during training, evidenced by ceiling level perfor-
mance on a subsequent memory task that required recall 
of the meanings of these words (meanaccuracy = 98.2 %, 
SD = 3.1%, Fig. 1B).

To test participants’ knowledge of the abstract rela-
tional structure rules, we presented a new set of composi-
tional pseudo-words that they had never encountered 
before (e.g. “short-kla” and “kla-short”) and asked them to 
imagine the meanings of the words, while recording fMRI. 
After 10% of the targets, participants were presented a 
probe question, asking whether the meaning of the target 
word was the same as that of the preceding, pseudo-word 
prime. Analysis of participants’ responses to these probe 
trials showed significantly higher probability of meaning-
match responses in order-congruent (mean  = 90.7%, 
SD  =  16.5%) than incongruent trials (mean  = 23.8%, 
SD  =  32.3%; β  =  4.52, SE  =  0.78, z  =  5.80, p  <  .001; 
Fig. 1D), evidencing their reliance on the abstract rules for 
inference. These results were validated in a posttest 
administered outside the scanner, where participants 
explicitly indicated whether they considered the novel 
pseudo-words that they had seen during the preceding 
MRI session to be meaningful or not (Fig. 1E, 1F, Supple-
mentary Materials 4). Moreover, participants did not con-
sider the uninterpretable pseudo-words to match the 
meaning of the real-word targets, and their responses in 
the uninterpretable condition did not differ from those in 
the incongruent condition (Supplementary Materials 4).

Together, these behavioral results demonstrate that 
participants were able to efficiently compute novel com-
positional meaning by generalizing previously learned 
abstract rules to new situations.

3.2.  Compositional meaning representations in 
language-specific frontal regions

Comparison of fMRI BOLD responses during primes (i.e., 
when participants first encountered the novel pseudo-
words) showed greater activity for order-incongruent 
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than congruent primes in multiple temporal and parietal 
areas, including the precuneus, the postcentral gyrus, 
and the lingual gyrus (Fig.  2A, Supplementary Material 
5A). Analysis of incongruent versus congruent targets 
revealed greater adaptation (and/or prediction error) of 
fMRI activity in a broad network of brain regions, includ-

ing the middle frontal gyrus (Fig.  2B; Supplementary 
Material 5A) and the left inferior frontal cortex (Fig. 2D; 
pFWE < .001, KE = 1118, Zmax = 4.47, MNI coordinates of 
the peak = [-50, 33, 10], Supplementary Material 5B), a 
region often associated with deriving new and complex 
meaning from the lexical building blocks (Hagoort, 2005, 

Fig. 2.  Univariate fMRI effects of novel meaning composition (prime-related activity) and its representational outcome 
(target-related activity). In red: order-congruent > order-incongruent; in blue: order-incongruent > order-congruent. (A) fMRI 
effects of order-congruent versus incongruent prime-related BOLD activity engages a broad temporoparietal network. 
(B) fMRI effects of order-congruent versus incongruent target-related BOLD activity (in blue: fMRI adaptation) reveal 
composed meaning representations in the left inferior cortex. (C) Prime-related effects of interest in the hippocampus 
and the striatum. (D) Target-related fMRI adaptation effects in the left IFG (in blue) but absent in the hippocampus. The 
hue indexes the sign and size of the contrast parameter estimate (congruent minus incongruent), and the opacity indexes 
the magnitude of the associated t values. Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid 
contours. All coordinates are provided in the MNI space.
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2016; Nevat et al., 2017; Weber et al., 2016; W. Zhang 
et  al., 2022). Notably, the reverse contrast revealed 
greater activation during the congruent versus incongru-
ent condition in the striatum, both at the time of the prime 
and the target (Fig. 2C, 2D; Supplementary Materials 5A).

Additional analyses within small volumes of interest 
revealed greater activity during incongruent than congru-
ent primes in the hippocampal formation (Fig. 2C, pFWE = 
.045, KE = 26, Zmax = 3.72, [17, -9, -20]), perhaps reflecting 
greater effort to resolve the generalization-based compo-
sition challenge during incongruent than congruent 
primes. There was no evidence for effects of prime type 
in the mPFC (no suprathreshold clusters found after small 
volume correction, SVC). In contrast to our hypothesis, 
during target words there was no evidence for differences 
in fMRI adaptation in the hippocampal formation after 
congruent versus incongruent primes (Fig.  2D, pFWE  = 
.203, KE = 6, Zmax = 3.50, [29, -38, 4], SVC). Moreover, the 
activity in mPFC was actually greater during targets fol-
lowing congruent than incongruent primes (Fig.  2B; 
pFWE  =  <  .001, KE  =  628, Zmax  =  4.26, [-12, 41, 20]). 
Together, these results suggest that novel word mean-
ings were represented in the middle frontal gyrus and left 
inferior frontal cortex, but not the predicted medial 
prefrontal-hippocampal network.

A supplementary analysis of contrasts between the 
congruent and uninterpretable conditions revealed quali-
tatively similar patterns of effects, thus substantiating 
these univariate analyses that focused on the congruent 
vs incongruent contrast (Supplementary Material 5C).

In sum, the process of composing meaning based on 
abstract relational structure rules, as measured in terms 
of prime-related BOLD signal, was associated with neural 
activity in a broad temporoparietal network, including the 
hippocampal formation. In addition, the representational 
outcome of this compositional process surfaced as fMRI 
adaptation of target-related neural activity in areas often 

associated with language processing, including the left 
inferior frontal cortex. Finally, successful meaning com-
position at target was accompanied by BOLD change in 
the striatum and the mPFC, perhaps reflecting intrinsic 
reward signaling.

3.3.  Abstract rule representations in a lateral 
frontoparietal network

The fMRI adaptation effect at the time of the congruent 
vs incongruent target likely occurred because partici-
pants already composed the newly inferred word mean-
ing using the abstract relational structure rules when they 
first encountered the primes. Indeed, RSA of congruent 
prime-related multivariate activity pattern using a whole-
brain searchlight approach showed that the newly con-
structed meanings were represented in left lateralized 
language-related areas (Fig. 3C), including the left inferior 
frontal cortex (pFWE = .001, KE = 109, Zmax = 3.84, [-36, 25, 
28]) and the angular gyrus (pFWE  <  .001, KE  =  167, 
Zmax = 3.70, [-44, -46, 36], Supplementary Material 6B). 
The pattern of these RSA effects, at prime, overlapped 
greatly with the pattern of RSA effects, computed from 
target-related neural activity (predicted by the same 
target-meaning model; Supplementary Material 6C). 
Moreover, this left inferior frontal area overlapped greatly 
with the left frontal cluster yielded by the univariate fMRI 
adaptation analysis, which was the comparison between 
congruent vs incongruent targets. Importantly, this prime-
related meaning representation was not captured by an 
alternative meaning model which described the similari-
ties between stem meanings (e.g., “short” in “short-kla” 
was more similar to “small” in “small-kla”, compared with 
“happy” in “happy-kla”; Kendall’s τstem-target  =  0.13; all 
cluster-level ps > .541; Supplementary Material 6D). This 
confirmed that the decoded target meaning represen
tation at the primes was not a result of the semantic 

Fig. 3.  Representational similarity analysis of meaning and rule representations. (A) A distance-based meaning model 
in which word meanings are arranged by their similarities. (B) A binary-coded rule model in which all the compositional 
pseudo-words ending with the same affix (e.g., “-kla”) are more similar to each other, compared with words with a different 
affix (e.g., “kla-”, “-ran”, or “ran-”). (C) Whole-brain searchlight RSA outcome using the meaning model. Effects are shown 
from an analysis in which only order-congruent primes were included. (D) Whole-brain searchlight RSA outcome using 
the rule model. Effects are shown from an analysis in which congruent and incongruent conditions were combined. For 
both (C) and (D), the hue indexes the sign and size of the correlation coefficient, and the opacity indexes the magnitude 
of the associated t values. Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid contours. All 
coordinates are provided in the MNI space. (E) ROI-based RSA of meaning and rule representations, extracted from the 
left inferior frontal gyrus. The analysis of meaning representations included only the congruent primes (left); whereas the 
analysis of rule representations included both congruent and incongruent conditions combined (middle) and separately 
(right). The ROI-based RSA was performed on both anatomically defined masks of the left IFG and the hippocampus. 
Hippocampal-based results is omitted in the figure due to low noise ceilings (see Supplementary Materials 6E). The gray 
horizontal line (or red/green line for the plot on the right) indicates the noise ceiling of the data extracted from the ROI, 
computed using a leave-one-out approach. The noise ceiling estimates the maximum performance any model could 
reasonably achieve given the noise in the data. Asterisks indicate the statistical significance: ***p < .001; **p < .01.
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relatedness between the target meaning and the stem 
meaning. Together, this RSA demonstrated that the rep-
resentation of the novel meaning was already composed 
and decodable at the time of pseudo-word primes.

Whole-brain searchlight RSA of prime-related activity 
pattern (including both congruent and incongruent 

primes) revealed representations of the abstract rules in a 
bilateral frontoparietal network (Fig. 3D), including dorso-
lateral prefrontal cortex (pFWE <  .001, KE = 1639, Zmax = 
4.59, [59, 7, 14]), middle temporal gyrus (pFWE  <  .001, 
KE = 4619, Zmax = 5.48, [-54, -52, 0]), and medial prefrontal 
cortex (pFWE <  .001, KE = 273, Zmax = 5.01, [-6, 25, 38], 
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Supplementary Material 6B). These areas are commonly 
implicated in the representation of task-state spaces and 
abstract rules in working memory for goal-directed action 
planning (Cole, Reynolds, et al., 2013; Cole & Schneider, 
2007; Dosenbach et al., 2007; Harding et al., 2015; Nee, 
2021; Spreng et al., 2010; Vaidya & Badre, 2022; Zanto & 
Gazzaley, 2013).

In contrast to our hypothesis, there was no evidence 
for either meaning or rule representations in the hippo-
campal formation, also not when reducing the search vol-
ume to an anatomically defined ROI (Supplementary 
Material 6E).

To explore the potential difference in rule representa-
tions between the order-congruent and incongruent 
primes, we performed the same analysis on the two 
conditions separately. Interestingly, ROI-based RSA in 
the left IFG revealed that the rule representation was 
stronger for the congruent than the incongruent condi-
tions (Meancong  = 0.04, SD  =  0.03; Meanincong  =  0.02, 
SD = 0.02; Paired t(29) = 3.00, p = .005, Fig. 3E). This 
was further supported by whole-brain searchlight RSA 
of the congruent and incongruent conditions (Supple-
mentary materials 6F).

In sum, our results showed that the online general-
ization of abstract rules for composing novel word 
meaning engaged a broad temporoparietal network 
including the hippocampus, with the newly composed 
words being represented in language-specific regions. 
During compositional generalization, both the newly 
inferred word meanings and the abstract rules could be 
decoded from a lateral frontoparietal control network, 
instead of the predicted medial prefrontal-hippocampal 
network.

4.  DISCUSSION

Our brain learns and abstracts generalizable knowledge 
to make inference and adapt to novel situations (Al Roumi 
et al., 2019; Behrens et al., 2018; Dehaene et al., 2022; 
Frankland & Greene, 2020; Gärdenfors, 2004; Liu et al., 
2019; Sablé-Meyer et  al., 2022; Schwartenbeck et  al., 
2023). Here, we leveraged fMRI adaptation and represen-
tational similarity analyses in the context of a new exper-
imental procedure to investigate the neural representations 
that support this ability to compose novel word meaning 
based on previously learned abstract relational structure 
rules. Using fMRI adaptation, we demonstrated that 
newly inferred meanings are represented in the left infe-
rior frontal cortex (IFC), a key region for constructing lin-
guistic meaning (Nevat et al., 2017; Weber et al., 2016; W. 
Zhang et al., 2022). While we interpret the reduced neural 
activity for order-congruent versus incongruent targets 
as neural adaptation (see also Wagner et al., 1997), it is 

also possible that this difference reflects prediction error 
in response to incongruent targets (see also Weber et al., 
2016). Although our current paradigm cannot distinguish 
prediction error from neural adaptation (cf. Todorovic & 
de Lange, 2012), both interpretations support the conclu-
sion that novel word meanings must have been com-
posed “on the fly”. Furthermore, the RSA-derived finding 
that novel meaning representations were decodable from 
the IFC already at prime onset reinforces the conclusion 
that the IFC represents the composed meanings them-
selves rather than representing prediction error. The con-
clusion that these representations reflect the newly 
composed meaning rather than the components of the 
pseudo-words is supported by the finding that the neural 
patterns at prime onset cannot be explained by a model 
of the meaning of the pseudo-word stems. It is remark-
able that the covert products of the compositional infer-
ence process were already represented at the time of the 
prime. This finding captures our generative capacity, and 
the role of the inferior frontal cortex in representing con-
structed meaning.

While we observed hippocampal activity during com-
positional inference – specifically when participants 
encountered incongruent words compared with congru-
ent ones, potentially reflecting greater effort to resolve 
the composition challenge – we found no clear evidence 
that the composed meanings themselves were repre-
sented in the hippocampus or the mPFC. This finding 
contradicts our preregistered hypothesis, which pre-
dicted that relational structure-based inference and gen-
eralization would engage representations within the 
medial prefrontal-hippocampal network, consistent with 
findings from other cognitive domains such as vision, 
memory, and planning (Baram et al., 2021; Barron et al., 
2013, 2020; Behrens et al., 2018; Bellmund et al., 2018; 
Garvert et al., 2023). One possibility is that the involve-
ment of this network depends on the format of the gener-
alizable, abstract rule representations used for 
composition. The medial prefrontal-hippocampal net-
work is thought to maintain task knowledge in a flexible 
cognitive map, with these map-like representations sup-
porting novel shortcuts or connections that are never 
experienced (Barron et  al., 2020; Garvert et  al., 2023; 
Jacobs et al., 2013; Morton et al., 2020; Park et al., 2021; 
Schuck et al., 2016; Schuck & Niv, 2019; Schwartenbeck 
et al., 2023). In hindsight, the abstract rules of our task 
are unlikely to be formatted in terms of such a relational 
map; instead, they are more likely to be formatted as 
propositional or production rules (e.g., “if ‘kla’ is affixed at 
the end of a word, then it reverses the meaning of the 
word”) (Vaidya & Badre, 2022).

To assess the neural locus of the abstract rule repre-
sentations, we conducted representational similarity 
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analyses. Results revealed rule representations in a lat-
eral frontoparietal network, including the dorsolateral 
prefrontal cortex (DLPFC) and lateral parietal cortex. 
These regions have previously been associated with the 
learning and use of abstract task representations for cog-
nitive control (Badre et  al., 2010; Cole, Laurent, et  al., 
2013; A. Eichenbaum et al., 2020; Ito et al., 2022; Loose 
et  al., 2017; Nee, 2021; Reverberi et  al., 2012; Tomov 
et al., 2018; Woolgar et al., 2011). This finding concurs 
generally with recent findings from an imaging study in 
which participants generalized (value-based) information 
across contexts based on learned abstract relationships 
that could also be conceptualized as being formatted as 
production rules (“if in context A, then category A+ gives 
more rewards”, Vaidya et al., 2021). These abstract pro-
duction rules were also found to be represented in a sim-
ilar frontoparietal control network, with flexible switching 
between rules facilitating efficient cognitive control. It is 
worth noting that while the rule model was designed to 
capture abstract rule representations, it may also reflect 
morpheme-based similarity driven by visual or positional 
properties of the stimuli. Our design cannot fully disen-
tangle these influences from rule-based effects. That 
said, such lower-level visual or form-based similarity is 
typically associated with regions like the primary visual 
cortex or the visual word form area, rather than higher-
order areas such as the dorsolateral prefrontal cortex, 
where we observed our key effects. Therefore, while we 
cannot entirely exclude lower-level contributions, our 
findings mostly reflect higher-level, abstract rule repre-
sentations beyond basic stimulus properties. Neverthe-
less, the implication of the DLPFC in abstract rule 
representation is a post-hoc observation that warrants 
direct investigation in future research.

Notably, the brain region identified as representing 
newly composed meanings, the left IFC, is anatomically 
close to the DLPFC, a core area of the aforementioned 
cognitive control network associated with structure rule 
abstraction and novel inference (Badre et  al., 2010; 
Bartolo & Averbeck, 2021; Braver et  al., 2002; Monti 
et al., 2007; Morton et al., 2020; Ramawat et al., 2022; 
Wallis et al., 2001). This might suggest a shared system 
for linguistic and nonlinguistic generalization, with the left 
hemisphere playing a more prominent role in facilitating 
communication within the language network (Fiebach 
et al., 2005; Hagoort, 2016). This interpretation is further 
supported by our findings of left-lateralized parietal 
involvement in abstract rule representations, such as the 
angular gyrus, a region known to be involved in composi-
tional semantic processes (Boylan et  al., 2015; Price 
et al., 2015; W. Zhang et al., 2022).

To further explore neural signals associated with the 
compositional process, we compared fMRI BOLD 

responses during order-congruent versus incongruent 
primes. The widespread increases in activity across 
temporal and parietal regions likely reflect the critical 
difference between these conditions. This difference 
could be driven by unsuccessful inference of meaning, 
increase demands for rule application, or difficulty with 
meaning generalization. However, given the design of 
our study, we cannot disentangle these possibilities, 
and future research will be needed to clarify the under-
lying mechanisms.

In addition, when comparing congruent versus incon-
gruent meaning compositions (both at the primes and at 
the targets), we observed increased neural activity in the 
striatum, a region often implicated in reward processing 
(Knutson et  al., 2000, 2001). This finding is surprising 
because we did not provide participants with reward 
feedback regarding the accuracy of their semantic judg-
ments; they were not informed which words were con-
gruent and therefore meaningful. This finding might 
suggest that the process of generating meaning itself 
may provide an intrinsic reward. This aligns with the idea 
that internal rewards can facilitate the learning of gram-
mar and new word meanings (Bains et al., 2024; Nevat 
et al., 2017; Ripollés et al., 2014; Ullman, 2016).

The observed weaker rule representation in the incon-
gruent compared to congruent primes may reflect a pro-
cess of rule switching. When participants encountered 
difficulty in composing a novel meaning under the incon-
gruent rule (e.g., interpreting “kla-short” as “the young 
version of short”), they might shift to applying the reverse, 
congruent rule, which leads to a more interpretable out-
come. This internal rule switching/shifting could result in 
a less stable representation of the assigned (incongruent) 
rule in the neural signal.

In sum, we investigated the neural representations 
that support novel compositional meaning inference. We 
leveraged the fact that participants can infer novel, com-
positional meanings on the fly, based on previously 
learned abstract rules (Tamminen et  al., 2015; Zheng, 
Petukhova, et  al., 2024). By using a semi-artificial lan-
guage with a fully controlled and simplified compositional 
rule, we were able to isolate and probe core cognitive 
mechanisms underlying linguistic composition and 
generalization—mechanisms that are otherwise difficult 
to disentangle in naturalistic contexts. Using fMRI, we 
demonstrated that abstract rule generalization for com-
posing novel meaning recruits processes and rule repre-
sentations in the frontoparietal control network—in 
contrast to the predicted medial prefrontal-hippocampal 
network—and that the covert mental products of the 
compositional process can be decoded from the frontal 
cortex at the time of composition. The obvious next 
question is whether this paradigm can be leveraged to 
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unravel the temporal dynamics of meaning composition. 
Future studies could use MEG to explore, for example: (1) 
whether word meaning representation in the left IFC 
reflects the transition from the stem word to the com-
posed target word; (2) whether the representation of the 
presented abstract relational structure rule shifts to its 
reversed-order rule when the latter results in successful 
composition.
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