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ABSTRACT

The ability to generalize previously learned knowledge to novel situations is crucial for adaptive behavior, representing
a form of cognitive flexibility that is particularly relevant in language. Humans excel at combining linguistic building
blocks to infer the meanings of novel compositional words, such as “un-reject-able-ish”. The neural mechanisms and
representations required for this ability remain unclear. To unravel these, we trained participants on a semi-artificial
language in which the meanings of compositional words could be derived from known stems and unknown affixes,
using abstract relational structure rules (e.g., “good-kla” which means “bad”, where “-kla” reverses the meaning of
the stem word “good”). According to these rules, word meaning depended on the sequential relation between the
stem and the affix (i.e., pre- vs. post-stem). During fMRI, participants performed a semantic priming task, with novel
compositional words as either sequential order congruent (e.g., “short-kla”) or incongruent primes (e.g., “kla-short”),
and real words serving as targets that were synonyms of the composed meaning of the congruent primes (e.g.,
“long”). Our results show that the compositional process engaged a broad temporoparietal network, while represen-
tations of composed word meaning were localized in a more circumscribed left-lateralized language network. Strik-
ingly, newly composed meanings were decodable already at the time of the prime in a way that could not be accounted
for representations of the prime words themselves. Finally, we found that the composition process recruited abstract
rule representations in a bilateral frontoparietal network, in contrast to our preregistered prediction of a medial
prefrontal-hippocampal network. These results support the hypothesis that people activate a bilateral frontoparietal
circuitry for compositional inference and generalization in language.

Keywords: abstract rule learning, compositional generalization, cognitive control, linguistic inference, representa-
tional similarity analysis, frontoparietal network

1. INTRODUCTION underpins learning and problem-solving across various

cognitive domains (Behrens et al., 2018; Dehaene et al.,
The ability to generalize previously acquired information 2022: Frankland & Greene. 2020: Gardenfors. 2004:

to novel scenarios is essential for adaptive behavior ina  Schwartenbeck et al., 2023), this capacity is particularly
changing world. While this hallmark of human cognition clearly illustrated by language. When encountering the
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novel word “un-reject-able-ish” for the first time, we can
swiftly infer its meaning by generalizing from the known
elements and integrating them according to abstract
relational structure rules, such as the sequential arrange-
ment of word parts (Tamminen et al., 2015; Zheng,
Petukhova, et al., 2024). We excel at combining linguistic
building blocks such as morphemes and words to form
larger structures like phrases and sentences, thereby
flexibly conveying an infinite array of thoughts and ideas.
The generation of linguistic meaning relies not only on the
constituent parts, but more importantly, also on the
abstract relational structure rules based on which they
are combined (Fodor, 1975; Fodor & Pylyshyn, 1988;
Frege, 1892; Martin, 2016; Partee, 2008). Consider the
sentences “The cat chased the mouse” and “The mouse
chased the cat”. Despite sharing identical linguistic build-
ing blocks, they convey distinct meanings. What neural
mechanisms enable us to infer novel compositional
meaning based on such rules? Does our brain represent
abstract rules to facilitate meaning generalization, and if
so, which circuits are recruited?

In cognitive neuroscience, extensive research has
been dedicated to understanding how our brain orga-
nizes knowledge to guide flexible behavior. An influential
line of inquiry has focused on how this organization is
achieved through learning simplified and abstract repre-
sentations of the world, formatted as cognitive maps
(Constantinescu et al., 2016; Moser et al., 2008; O’Keefe
& Nadel, 1978; Solomon et al., 2019; Tolman, 1948;
Zheng, Hebart, et al., 2024). These relational knowledge
structures allow us to infer associations that have not
been directly experienced, and to generalize those
abstract structures to novel situations (Bein & Niv, 2023;
H. Eichenbaum & Cohen, 2014; Piaget, 1929; Preston &
Eichenbaum, 2013). In a recent study, Schwartenbeck
et al., (2023) investigated the neural representations and
mechanisms that enable compositional generalization in
the domain of vision. Participants solved compositional
problems by inferring the relational positions of building
blocks in a visual silhouette (e.g., a building block on top
of vs. below another building block). Using fMRI, they
found generalizable, relational configurations of visual
building blocks to be represented in a medial prefrontal-
hippocampal network. The same network has been
shown to be recruited during various other forms of gen-
eralization, ranging from discovering a shortcut in spatial
navigation (Epstein et al., 2017; Jacobs et al., 2013;
Moser et al., 2008; O’Keefe & Nadel, 1978; Tolman, 1948),
to “joining the dots” between events (Barron et al., 2013,
2020; Garvert et al., 2023; Morton et al., 2020), and to
inferring unknown relationships in social contexts (Park
et al., 2020, 2021). It has been proposed that neural cog-
nitive map-like representations in circuitry connecting the

hippocampus with the medial frontal cortex can serve as
a universal knowledge code for generalization and novel
inference across multiple cognitive domains (Behrens
et al., 2018; Bellmund et al., 2018; Stachenfeld et al.,
2017; Whittington et al., 2018).

In language sciences, the investigation of composi-
tional generalization has, however, primarily implicated
neural networks other than this medial prefrontal-
hippocampal network. Compositionality—the ability to
combine lexical building blocks to create linguistic
meaning (Fedorenko et al., 2016; Gwilliams, 2020;
Hagoort, 2019a, 2019b; Hagoort & Indefrey, 2014;
Martin, 2020; Pylkkanen, 2019; Zaccarella et al., 2017;
Zaccarella & Friederici, 2015)—is thought to rely on left-
lateralized, language-specific networks, particularly in
regions such as the left inferior frontal gyrus (Bozic et al.,
2007; Bozic & Marslen-Wilson, 2010; Hagoort, 2005,
2016; Leminen et al., 2019; Nevat et al., 2017) and the
left anterior temporal lobe (Baron & Osherson, 2011;
Brennan et al., 2012; Flick et al., 2018; Pylkkanen, 2019).
This suggests that compositional inference in language
might engage neural systems distinct from those
involved in compositional processes in relational mem-
ory, action planning and vision, challenging the notion
that hippocampal-based representational codes are
domain-general.

In the current preregistered fMRI study, we aimed to
test this hypothesis by investigating the neural mecha-
nisms underlying the ability to infer novel compositional
word meanings based on abstract relational structure
rules. Specifically, we aimed to assess whether rela-
tional structure-based composition in language recruits
the medial prefrontal-hippocampal network that has
also been implicated in action planning, visual composi-
tion, and relational memory (Baram et al., 2021; Barron
et al., 2020; Schwartenbeck et al., 2023). To this end, we
employed a recently developed language-learning para-
digm where participants generalize abstract rules to
infer novel compositional meanings (Zheng, Petukhova,
et al., 2024). Unlike existing procedures that decode
neural representations during natural language compre-
hension (e.g., Huth et al., 2016), this controlled experi-
mental paradigm uses a semi-artificial language to
isolate generalizable abstract rules for meaning compo-
sition and to probe core cognitive mechanisms that are
otherwise difficult to disentangle in natural language. In
this task, participants infer abstract rules from linguistic
exemplars, then use these rules to derive the meanings
of novel compositional words. According to these rules,
word meaning depends on the sequential relation
between the stem and the affix (i.e., pre- vs. post-stem).
The paradigm was designed to capture (i) the observa-
tion that sequential order plays a key role in composi-
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tionality in natural language (Beyersmann & Grainger,
2023; Crepaldi et al., 2013, 2016), but furthermore, also
(ii) the relational structure-dependent nature of compo-
sitional generalization in non-linguistic domains associ-
ated with hippocampal-medial frontal cortical circuitry
(Baram et al.,, 2024; Barron et al., 2020; Garvert
et al.,, 2023; Morton et al.,, 2020; Park et al., 2021;
Schwartenbeck et al., 2023).

2. METHODS

The study was approved by the local ethics committee
(METC Oost-Nederland, 2014/288) and conducted in
accordance with the Declaration of Helsinki. All partici-
pants provided written informed consent and received
monetary compensation. The study was preregistered at
AsPredicted (https://aspredicted.org/mk5i2.pdf).

2.1. Participants

Given the lack of prior data for this novel fMRI paradigm,
we conducted a prior power analysis assuming a medium
effect size (Cohen’s d = 0.5). This yielded a target sample
size of 34 participants to achieve 80% power at an alpha
of 0.05. To ensure that we retain sufficient data after
applying standard MRI quality control and behavioral
exclusion criteria, we planned a overshoot in recruitment.
Specifically, we collected data from 43 right-handed,
healthy Dutch native speakers (Meanage =231, SDage =4.3,
range 18-33, 27 women, 15 men, 1 other). All participants
had normal or corrected-to-normal vision. No participants
reported any current or previous psychiatric or neurologi-
cal disorders, nor MRI contraindications, such as unre-
movable metal parts in the body and claustrophobia.
Seven participants were excluded due to various reasons,
including scanner failure (N = 1), poor fMRI data quality
(N = 3, see criteria in MRI data acquisition and prepro-

cessing), falling asleep in the scanner (N = 1), or failure to
learn to generalize the abstract rules (N = 4; 2 of which
overlap with the ones with poor fMRI data, see criteria in
Behavioral analysis), resulting in a dataset of 36 partici-
pants. In addition, 6 participants were excluded due to an
unexpected error in the stimulus list in the scanning ses-
sion. This left us with a final sample of 30 participants
(Meanage = 23.0, SDage = 3.5, range = 18-30, 19 women,
11 men), slightly smaller than the planned target (N = 34).

2.2. Experimental paradigm

To quantify participants’ ability to construct composi-
tional word meaning by generalizing abstract relational
structure rules, we employed an experimental paradigm
where participants learned a semi-artificial language fea-
turing various rules of compositions (Zheng, Petukhova,
et al., 2024). A schematic diagram of the experiment is
provided in Figure 1.

2.2.1. Design

During a pre-scanning training phase, participants were
exposed to pairs of compositional pseudo-words along
with their experimentally assigned meanings (Fig. 1A, Sup-
plemental Material 1). Each of these compositional
pseudo-words comprised a known stem (e.g., “good” in
“good-kla”) and an unknown affix (e.g., “kla”). Going
beyond previous work on linguistic generalization (e.g.,
Tamminen et al., 2015), we designed the experiment such
that meaning inference required the processing of the rela-
tional structure of the pseudo-word. Specifically, we
manipulated the mapping of the meaning to the affix based
on its sequential position: e.g., “-kla” as a suffix meant “the
opposite”, whereas “kla-” as a prefix meant “young ver-
sion”. These position-dependent rules allowed partici-
pants to compose unique meanings based on different

Fig. 1.

»
>

Experimental design (A, C, E) and behavioral results (B, D, F). (A) Participants learned and memorized artificial,

compositional words. These compositional pseudo-words consisted of a known stem and an unknown affix. The affix
alters the word meaning depending on its position (pre- vs. post- stem). Importantly, the abstract relational structure rules
were never made explicit to the participants. (B) Box plots of participant’s choice performance in a memory task, where
they recalled the meaning of the learned pseudo-words. (C) We tested participants’ knowledge with novel, compositional
pseudo-words using an fMRI adaptation paradigm, in which the prime pseudo-words were always followed by a target,
real word. The pseudo-word primes were either congruent or incongruent with the sequential order specified by the
abstract rules, or belonged to a third condition in which the primes lacked interpretable meaning, regardless of order.
The target word was always a matched synonym to the congruent prime word. (D) Boxplots of participants’ responses

in the fMRI task across three experimental conditions, on the 10% probe trials on which they indicated with a left or

right button press whether the prime words did or did not match the target words in terms of their meaning. (E) After

the fMRI session, we explicitly asked participants to evaluate the meaningfulness of the novel compositional words.

(F) Boxplots of participants’ responses in the posttest across three experimental conditions, where they indicated whether
the pseudo-words are meaningful or not. The actual stimuli used in the experiment were in participants’ native language,
Dutch (Supplementary Material 1). For (B, D, F), the thick horizontal line inside the box indicates the group median, and
the bottom and top of the box indicate the group-level first and third quartiles of each condition. Each dot represents one
participant. The black lines connect the group median across conditions.
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sequential combinations of the affixes with the stems. Cru-
cially, while the participants could infer the rules from the
exemplars, these rules were never made explicit to them.

To test participants’ knowledge of abstract relational
structure rules, after training, we presented a new set of
compositional pseudo-words which they had never
encountered before (e.g. “short-kla” and “kla-short”) and
asked them to imagine the meanings of the words while
recording fMRI. These novel pseudo-words were
designed to either create conflict or not based on the
application of the abstract rules regarding sequential
order for meaning inference. For example, for “short-kla”,
“-kla” as a suffix means “the opposite”, and the opposite
of short is “long”. Conversely, for “kla-short”, “kla-" as a
prefix means “the young version of”, and it is much more
difficult to infer the meaning of the young version of
“short”. These two types of pseudo-words—order-
congruent and order-incongruent—were presented as
primes and paired with real-word targets that were always
synonyms of the congruent meaning (e.g., “short-kla” or
“kla-short” followed by “long”; Fig. 1C).

We further included a third condition of pseudo-words,
where the stems were combined with alternative affixes
in such a way that the combination yielded uninterpreta-
ble meanings regardless of the position of the affix (e.g.,
ran-short = the color of short; short-ran = the person who
engages with short). As a result, these compositional
words did not correspond to the target word meanings
(e.g., = long). Note that while a given affix was paired
congruently with several different stems, each stem was
congruently paired with only a single affix (and also
appears in various control conditions).

The setup was optimized for capturing neural adapta-
tion in fMRI and allowed us to assess activity in neural
circuits commonly associated with novel inference and
abstract rule-based generalization.

2.2.2. Procedure

Both the pre-scanning training and posttest were carried
out in a sound-proof testing booth adjacent to the MRI
room. The experiment was run using the software Pre-
sentation (Version 20.2, Neurobehavioural System Inc,
Berkeley, U.S.).

2.2.2.1. Pre-scanning training. Participants studied the
training set of 30 compositional pseudo-words in a self-
paced manner. Every compositional word was presented
together with its synonym meaning and an example sen-
tence using the word in context, till a maximum of 15 s or
participants pressing to continue. After viewing all the
words, participants completed a multiple-choice test
where on each trial, they were given a synonym meaning

and asked to choose a matched compositional word.
Each compositional word was presented once in a learn-
ing block and once in a memory test. All the words were
presented in a pseudorandom order, with the same affix
form or affix position repeated on no more than three
consecutive trials. The learning blocks and memory tests
were interleaved and repeated for four times, with 30 tri-
als per block.

2.2.2.2. Scanning session. Next, participants went
through a testing session in the MRI scanner, where they
were presented with the testing set of novel (i.e., never
previously seen) compositional pseudo-words (primes),
paired with real-word targets that were either matched or
unmatched synonyms. Participants were asked to imag-
ine the meaning of the words presented on the screen.

Each prime word was presented on the screen for
1500 ms, followed by a jittered screen of “***”. The target
word was then presented on the screen for 1500 ms, fol-
lowed by another jittered screen of a fixation. Then, the
next trial started. Both jittered intervals were generated
from a truncated exponential distribution with a mean of
2 s (range = 1.5 - 5 s). All prime words and target words
were presented in black, in the center of a white screen.
Each block started with a 2 s fixation. All the pairs of
prime and target were presented in a pseudorandom
order, with the following requirements: (1) the same affix
form or affix position repeated on maximally three con-
secutive trials; (2) the same condition repeated maximally
for three consecutive trials; (3) The same stem repeated
at least five trials apart.

To ensure that participants paid attention to the prime
words, we included probe questions on 10% of the trials
where participants needed to indicate if the prime
pseudo-word shared the same meaning as the target
word (“probe trials”). They responded by pressing the left
(“yes”) or the right button (“no”) on the button box using
their right index finger or middle finger, respectively. The
probe questions stayed on the screen for a maximum of
10 s or until participants responded. The task then pro-
ceeded with a jittered fixation followed by the next trial.

The task consisted of three blocks in total, with each
prime-target pair in each condition presented once in
each block. Prior to going into the scanner, participants
went through a practice block in the behavioral booth,
where they were familiarized with the task and received
feedback on their performance.

2.2.2.3. Posttest. In a post-test, participants were
asked whether the compositional pseudo-words they
had seen in the scanning session were meaningful, and if
so, what they meant.

The whole session took about 3 h.
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2.3. MRI data acquisition and preprocessing

2.3.1. Data acquisition

The MRI experiment was performed on the institute’s 3T
MAGNETOM PrismalFitf MR scanner (Siemens AG,
Healthcare Sector, Erlangen, Germany) using a product
32-channel head coil. Out of the 30 participants in the
final sample, 15 were scanned in a Prisma scanner and
15 were in a PrismaFit scanner. The assignments of par-
ticipants were randomized. Despite the fact that the two
scanners were theoretically the same, we additionally
validated our results by including scanner as a second-
level covariate. Our results were unchanged when adding
scanner-type as covariance.

T2*-weighted blood-oxygen-level-dependent (BOLD)
images were acquired in three blocks, recorded using a
whole-brain multiband accelerated echo-planar imaging
(EPI) sequence [TR, 1500 ms; TE, 39.6 ms; multiband
acceleration factor, 4; flip angle, 75°; slice matrix size,
104 x 104; voxel size, 2.0 mm isotropic; FoV, 210 x
210 x 136 mm; bandwidth: 2090 Hz/px; echo spacing:
68 ms]. A high-resolution structural image (1 mm isotro-
pic) was acquired using a T1-weighted 3D magnetization-
prepared rapid gradient-echo sequence (MP-RAGE; TR,
2300 ms; TE, 3.03 ms; flip angle, 8° FoV, 256 x
256 x 192 mm).

2.3.2. MRI quality control

The MRI quality control was performed using MRIQC
22.0.6. (Esteban et al., 2017). Means of framewise dis-
placement (both in mm and in percentage of timepoints),
temporal SNR, and DVAR for functional images were
computed per participant per block based on the image
quality metrics. Blocks with any of these values larger
than 2.5 SD from the group mean were excluded (or
smaller than 2.5 SD for temporal SNR). Individuals with
two or more blocks excluded were also excluded from
the dataset (N = 3).

2.3.3. Preprocessing

All MRI data were preprocessed using fMRIPrep 21.0.2
(Esteban, Blair, et al., 2018; Esteban, Markiewicz, et al.,
2018; RRID:SCR_016216), which was based on Nipype
1.6.1 (Gorgolewskietal., 2011, 2018; RRID:SCR_002502).
Information about the preprocessing of anatomical and
functional data was retrieved directly from fMRIPrep and
provided in Supplementary Material 2.

In addition, we used Statistical Parametric Mapping
12 (SPM12; Wellcome Trust Centre for Neuroimaging,
https://www.fil.ion.ucl.ac.uk/spm/) to spatially smooth

the final preprocessed BOLD time series with a 6 mm
FWHM kernel.

2.4. Behavioral analysis

2.4.1. Preprocessing

As a sanity check, we confirmed that all participants
scored above chance-level (25%) in the memory test
after the last block of learning and recalled more than half
of the learned words in the posttest.

Participants’ written responses to the pseudo-word
meaning in the posttest were coded as (1) matching the
synonym, (2) meaningless, (3) creative, unexpected
answers (e.g., when one consider a pseudo-word
“human-kla” from the uninterpretable condition, the
opposite of human, to be “animal”), and (4) unexpected
but incorrect answers (e.g., when one confused the
meaning of different affix forms, mistook “warm-ran” as
“warm-kla‘ and reported the meaning to be “cold”, the
opposite of warm). We excluded the unexpected cases
from the analysis, which concerned 4.8% of the ftrials.
Due to the paired presentations in the priming task (e.g.,
“short-kla” always followed by “long”), participants who
judged a pseudo-word as meaningful in the post-test
typically provided the target synonym as its inferred
meaning (e.g., responding that “short-kla” meant “long”)
in open-ended questions (Kendall’s t = 0.98, p < .001).
Therefore, we used the second measure—the percent-
age of inferred meaning matching the synonym word —as
an indicator of participants’ explicit inference, as it offered
greater certainty than a binary choice. Based on the post-
test, we excluded participants who failed to learn the
abstract rules (N = 4, of which 2 were the same partici-
pants excluded due to MRI quality control). They were
defined as those who consider more than half of the
pseudo-words in the uninterpretable condition to be
meaningful, or more than half of the pseudo-words in the
congruent condition to be meaningless.

2.4.2. Statistical analyses

Behavioral data were submitted to generalized linear
mixed models with the gimmTMB package (Version
1.9.11, Brooks et al., 2017) in R (Version 4.1.0; R Core
Team, 2017). For the analysis of the probe trials and the
post-test, we included experimental condition (order-
congruent vs. order-incongruent vs. uninterpretable) as a
predictor. Participants and items were included as ran-
dom effects, with condition as a random slope for partic-
ipants. The significance of condition was assessed using
the Type Il Wald Chi-square test. We used the multcomp
package (Version 1.4.17, Hothorn et al., 2008) to conduct
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pairwise comparisons among the three experimental
conditions.

2.5. fMRI analysis

fMRI data were analyzed using SPM12, the Matlab-based
Representational similarity analysis (RSA) toolbox (Nili
et al, 2014, https://github.com/rsagroup/rsatoolbox
_matlab) and custom scripts written in MATLAB R2022b
(Mathworks Inc.; https://nl.mathworks.com/products
/matlab.html).

2.5.1. Univariate analysis

To identify the neural BOLD signals associated with the
compositional process, we compared fMRI responses
during order-congruent versus order-incongruent primes,
when participants first encountered the novel pseudo-
words. To uncover the neural representations of the com-
posed meanings, we exploited the phenomenon of fMRI
adaptation (Barron et al., 2016; Grill-spector et al., 2006).
This effect refers to a reduced neural response when the
same neural population is repeatedly activated, with the
degree of suppression scaling with the similarity between
neural representations. Notably, suppression can also
occur when different stimuli that share a relevant feature
(e.g., semantic meanings) are presented in close succes-
sion (“cross-stimulus suppression”). Based on this prin-
ciple, we reasoned that in brain regions involved in
representing word meanings, neural response should be
suppressed upon repeated exposure to the same seman-
tic content—a well-established effect in semantic prim-
ing paradigms (Matsumoto et al., 2005; Wagner et al.,
1997; Wible et al., 2006). In our task, neural signals at the
time of the target would be suppressed to a greater
degree when that target was preceded by a order-
congruent prime word that shared the same meaning,
compared with an ambiguous, order-incongruent prime
with reversed structural order, reflecting the effect of
abstract rules.

An event-related generalized linear model (GLM) was
used to model both the prime and the target events, and
contained separate onset regressors for each of the four
experimental conditions (i.e., congruent, incongruent,
and two times uninterpretable conditions—the latter
counterbalanced to ensure the same amount of trials per
affix type). The GLM also contained an onset regressor
for the probe trials and a button press regressor as
regressors of no interest. All regressors were convolved
with a canonical hemodynamic response function.
Because of the sensitivity of the blood oxygen level-
dependent signal to motion and physiological noise, we
included in the GLM the framewise displacement, six

rigid-body motion parameters (three translations and
three rotation), six anatomical component-based noise
correction components (@CompCorr), and all the cosine
regressors estimated by fmriprep as confound regres-
sors for denoising. Each block was modeled separately
within the GLM. The contrast images of all participants
were then analyzed as a second-level random effects
analysis.

Our preregistration included a planned contrast com-
paring the order-congruent/incongruent conditions to the
uninterpretable condition for successful inference. How-
ever, to foreshadow the results, the participants did not
distinguish between the order-incongruent and uninter-
pretable conditions in their behavioral responses. Given
this observation, we focused the main fMRI analysis on
the congruent and incongruent conditions. As a valida-
tion for successful vs. unsuccessful interference, analy-
ses of prime- and target-related activities for the
congruent versus uninterpretable contrast are provided
in Supplementary Material 5C.

Based on previous work on nonlinguistic composition
and generalization, particularly in the domain of rela-
tional memory (Barron et al., 2020; Garvert et al., 2023;
Jacobs et al., 2013; Morton et al., 2020; Park et al.,
2021; Schwartenbeck et al., 2023), we hypothesized
that the process of composing novel meanings elicits
activity in a circuit connecting the hippocampal forma-
tion with the medial prefrontal cortex. To test the engage-
ment of this network, we conducted additional analyses
using small volumes correction (SVC) within an anatom-
ically defined ROl combining the hippocampal formation
(incl. hippocampus, entorhinal cortex, subiculum) and a
functionally defined medial prefrontal cortex (mPFC) ROI
(Schwartenbeck et al., 2023). To examine the role of the
language network in meaning inference, we performed
additional SVC using two anatomically defined masks:
the left inferior gyrus (IFG) and the left anterior temporal
lobe (ATL). All ROls are defined in Supplementary Materi-
als 3. We considered our results significant if they sur-
vived family-wise error (FWE) correction at the cluster-level
of p < .05 within these masks. Activations in other brain
regions were only considered if they survived whole-brain
cluster-level FWE correction at p < .05. All statistical
parametric maps visualized in the manuscript were
thresholded at p <.001 uncorrected and unmasked solely
for illustration.

2.5.2. Multivariate representational similarity
analysis

To decode the neural representations of both the
abstract relational structure rules and the newly inferred
word meanings at the time of prime, we adopted a
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multivariate RSA approach (Kriegeskorte et al., 2008;
Nili et al., 2014). Consider the compositional pseudo-
word “short-kla”: To compose its meaning, participants
would represent the rule (“-kla” means “the opposite
of”); moreover, provided successful composition, they
would also represent the composed meaning (“short-
kla” means “long”). RSA allowed us to capture the rele-
vant neural representations by computing the neural
representational dissimilarity matrices (RDMs) based on
prime-related fMRI activity for each pseudo-word, ana-
lyzed through a whole-brain searchlight. We assessed
whether these neural RDMs were explained by model
RDMs (see below) that capture the similarities between
these pseudo-words as a function of either their com-
posed meaning (derived from a word embedding model)
or the rule that was used to compose them (by experi-
mental design).

2.5.2.1. Neural RDMs. To construct a neural RDM, we
pairwise computed the similarities between multivariate
neural activity patterns elicited by each pseudo-word
primes and all others. Two primary types of neural RDMs
were computed from the prime-related fMRI data: the
first one irrespective of congruency, the second type
modeling separately for the congruent and incongruent
conditions. We expected both congruent and incongru-
ent conditions to engage abstract rule representations,
whereas only congruent primes to lead to target meaning
representations.

For the first RDM, we estimated neural activity for
each prime using a GLM that included separate onset
regressors for each of the 30 compositional pseudo-
words, collapsing across congruency (e.g., a single onset
regressor for both “short-kla” and for “kla-short”). The
resulting parameter estimates were used to compute a
30 x 30 neural RDM. For the second RDM, a separate
GLM modeled the prime according to congruency (e.g.,
distinct onset regressors for “short-kla” and for “kla-
short”). This produced a second type of neural RDMs
reflecting condition-specific representations, including
the congruent-only RDM and the incongruent-only RDM.

Both GLMs included additionally regressors of no
interest: one for all prime trials in the uninterpretable con-
dition, one for all the target words, one for the probe tri-
als, and one for button presses. All regressors were
convolved with a canonical haemodynamic response
function. The same confound regressors as in the univar-
iate analysis were included, and each block was modeled
separately.

For rule representation, we began with the first neural
RDM (i.e., including both congruent and incongruent
primes), based on the expectation that both conditions
engage abstract rule representations during the compo-

sitional process (i.e., at the time of the prime). Given the
novel inference nature of the study, each pseudo-word
was presented only once per block to avoid repetition.
Collapsing across congruent and incongruent conditions
also effectively doubled the number of trials per item
across the three blocks. To further examine potential dif-
ferences in rule representations between the congruent
and incongruent conditions, we used the second set of
condition-specific neural RDMs.

We reasoned that during incongruent primes, partici-
pants may not be representing the target word meanings.
Therefore, we used the second, congruent-only RDM to
assess meaning representations

In addition, we computed a third neural RDM using
target-related fMRI data from all conditions (i.e., including
the uninterpretable condition). This RDM served to vali-
date the RSA procedure, specifically in relation to target
word visual and meaning representations.

All RSA employed a whole-brain searchlight approach
with a 7 mm spherical radius (approx. 180 voxels), with
pairwise correlation distance (one minus Pearson cor-
relation coefficient) as the distance metric.

2.5.2.2. Model RDMs. We constructed two models of
interest:

(1) Meaning Model (Fig. 3A): This model captures rep-
resentations of newly composed word meanings,
arranged by their semantic similarities derived
from a word embedding model (see below). For
example, “long” (from “short-kla”) is more similar
to “big” (from “small-kla”) than to “sad” (from “happy-
kla”). We hypothesized that BOLD pattern similar-
ity in brain regions encoding these newly con-
structed meanings (e.g., “short-kla” means “long”)
should reflect the semantic similarity of the com-
posed words (e.g., “long”).

(2) Rule Model (Fig. 3B): This model captures the rep-
resentation of abstract relational structure rules,
where all compositional pseudo-words ending
with “-kla” are more similar to each other than to
pseudo-words with different affixes (e.g., “kla-”,
“-ran”, or “ran-"). We expected that the BOLD pat-
terns from brain regions encoding abstract rules
would be best explained by this model.

The meaning model was constructed using embed-
ding vectors for the 30 target words (e.g., “long” in “short-
kla = long”) from a word embedding model (Mandera
et al., 2017). Word embedding represent words in a con-
tinuous vector space, where similar meanings have simi-
lar representations. To limit the degrees of freedom in
selecting from the many available language models, we
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opted for a relatively simple and well-established mod-
el—a Continuous Bag of Words (CBOW). This model has
been shown to effectively predict human behavior of
semantic priming in the Dutch-speaking population, con-
sistent with our sample. Specifically, Mandera et al.
(2017) evaluated several prediction-based language
models against a large behavioral dataset. We used the
best-fitting model there: CBOW model trained on the
SONAR-500 text corpus (Oostdijk et al., 2013) and a cor-
pus of movie subtitles. Pairwise Pearson correlation dis-
tances between target word embeddings formed a 30*30
distance matrix representing target meaning similarities.
In addition, we constructed a stem meaning model based
on the stems of the 30 prime words (e.g., “short” in
“short-kla = long”).

For the rule model, we considered a 30*30 binary-
coded distance matrix, where rules were either the same
(e.g., “short-kla” and “happy-kla”) or different (“short-kla”
and “kla-dog”).

As a sanity check for the RSA procedure, we com-
puted two visual model RDMs to capture target word-
related visual patterns and confirmed that the visual
aspects of word forms were represented in the visual cor-
tex (Supplementary Material 6A). Both RDMs reflect the
visual similarity of target words presented on the screen:
(1) Levenshtein distance, calculated using the “stringdist”
library (van der Loo, 2014) in R; (2) Pixel-wise Euclidean
distance between individual words. As expected, these
two RDMs were highly correlated (Kendall's © = 0.57,
p <.001).

2.5.2.3. Statistics. Within each searchlight sphere for
each participant, we compared the model RDMs with the
neural RDMs using Kendall’s rank correlation. Both the
searchlight analysis of the neural RDMs and the compar-
ison with the model RDMs were conducted using the
Matlab-based RSA toolbox (Nili et al., 2014). The result-
ing correlation coefficients were submitted to a one-
sample t-test (i.e., contrasting the obtained correlation
against zero) using SPM12. Statistical significance was
assessed using cluster-inference with a cluster-defining
threshold of p < .001 and whole-brain cluster-level FWE
correction at p < .05.

Additionally, we conducted ROI-based RSA using the
same hippocampal mask and the left IFG mask as in the
univariate analysis. For each structural ROI, we followed
the same procedure as the searchlight analysis, with first-
level coefficients submitted to a group-level one-sample
one-side t-test.

To estimate the explainable variance in the neural
data—that is, the maximum correlation any model could
reasonably achieve given the noise in the data—we cal-
culated the lower bound of the noise ceiling using a

leave-one-participant-out approach. For each partici-
pant, we correlated their neural RDM with the average
neural RDM of all the other participants and then aver-
aged these values across participants to obtain a conser-
vative estimate of the noise ceiling. The noise ceiling was
not used for statistical inference, but served as a descrip-
tive benchmark to evaluate model performance.

3. RESULTS

3.1. Generalization of abstract rules for novel
meaning inference

The meanings of all pseudo-words were successfully
learned during training, evidenced by ceiling level perfor-
mance on a subsequent memory task that required recall
of the meanings of these words (mean =98.2 %,
SD = 3.1%, Fig. 1B).

To test participants’ knowledge of the abstract rela-
tional structure rules, we presented a new set of composi-
tional pseudo-words that they had never encountered
before (e.g. “short-kla” and “kla-short”) and asked them to
imagine the meanings of the words, while recording fMRI.
After 10% of the targets, participants were presented a
probe question, asking whether the meaning of the target
word was the same as that of the preceding, pseudo-word
prime. Analysis of participants’ responses to these probe
trials showed significantly higher probability of meaning-
match responses in order-congruent (mean = 90.7%,
SD = 16.5%) than incongruent trials (mean = 23.8%,
SD = 32.3%; B = 4.52, SE = 0.78, z = 5.80, p < .001;
Fig. 1D), evidencing their reliance on the abstract rules for
inference. These results were validated in a posttest
administered outside the scanner, where participants
explicitly indicated whether they considered the novel
pseudo-words that they had seen during the preceding
MRI session to be meaningful or not (Fig. 1E, 1F, Supple-
mentary Materials 4). Moreover, participants did not con-
sider the uninterpretable pseudo-words to match the
meaning of the real-word targets, and their responses in
the uninterpretable condition did not differ from those in
the incongruent condition (Supplementary Materials 4).

Together, these behavioral results demonstrate that
participants were able to efficiently compute novel com-
positional meaning by generalizing previously learned
abstract rules to new situations.

accuracy

3.2. Compositional meaning representations in
language-specific frontal regions

Comparison of fMRI BOLD responses during primes (i.e.,
when participants first encountered the novel pseudo-
words) showed greater activity for order-incongruent
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Fig. 2. Univariate fMRI effects of novel meaning composition (prime-related activity) and its representational outcome
(target-related activity). In red: order-congruent > order-incongruent; in blue: order-incongruent > order-congruent. (A) fMRI
effects of order-congruent versus incongruent prime-related BOLD activity engages a broad temporoparietal network.

(B) fMRI effects of order-congruent versus incongruent target-related BOLD activity (in blue: fMRI adaptation) reveal
composed meaning representations in the left inferior cortex. (C) Prime-related effects of interest in the hippocampus

and the striatum. (D) Target-related fMRI adaptation effects in the left IFG (in blue) but absent in the hippocampus. The
hue indexes the sign and size of the contrast parameter estimate (congruent minus incongruent), and the opacity indexes
the magnitude of the associated t values. Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid

contours. All coordinates are provided in the MNI space.

than congruent primes in multiple temporal and parietal
areas, including the precuneus, the postcentral gyrus,
and the lingual gyrus (Fig. 2A, Supplementary Material
5A). Analysis of incongruent versus congruent targets
revealed greater adaptation (and/or prediction error) of
fMRI activity in a broad network of brain regions, includ-
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ing the middle frontal gyrus (Fig. 2B; Supplementary
Material 5A) and the left inferior frontal cortex (Fig. 2D;
Peye < 001, K. =1118, Z = 4.47, MNI coordinates of
the peak = [-50, 33, 10], Supplementary Material 5B), a
region often associated with deriving new and complex
meaning from the lexical building blocks (Hagoort, 2005,
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2016; Nevat et al., 2017; Weber et al., 2016; W. Zhang
et al., 2022). Notably, the reverse contrast revealed
greater activation during the congruent versus incongru-
ent condition in the striatum, both at the time of the prime
and the target (Fig. 2C, 2D; Supplementary Materials 5A).

Additional analyses within small volumes of interest
revealed greater activity during incongruent than congru-
ent primes in the hippocampal formation (Fig. 2C, p,,,. =
.045,K.=26,Z  =3.72,[17, -9, -20Q]), perhaps reflecting
greater effort to resolve the generalization-based compo-
sition challenge during incongruent than congruent
primes. There was no evidence for effects of prime type
in the mPFC (no suprathreshold clusters found after small
volume correction, SVC). In contrast to our hypothesis,
during target words there was no evidence for differences
in fMRI adaptation in the hippocampal formation after
congruent versus incongruent primes (Fig. 2D, p.,. =
.203,K.=6,Z__ =3.50, [29, -38, 4], SVC). Moreover, the
activity in mPFC was actually greater during targets fol-
lowing congruent than incongruent primes (Fig. 2B;
Peye = < 001, K. =628, Z = 4.26, [-12, 41, 20)).
Together, these results suggest that novel word mean-
ings were represented in the middle frontal gyrus and left
inferior frontal cortex, but not the predicted medial
prefrontal-hippocampal network.

A supplementary analysis of contrasts between the
congruent and uninterpretable conditions revealed quali-
tatively similar patterns of effects, thus substantiating
these univariate analyses that focused on the congruent
vs incongruent contrast (Supplementary Material 5C).

In sum, the process of composing meaning based on
abstract relational structure rules, as measured in terms
of prime-related BOLD signal, was associated with neural
activity in a broad temporoparietal network, including the
hippocampal formation. In addition, the representational
outcome of this compositional process surfaced as fMRI
adaptation of target-related neural activity in areas often

associated with language processing, including the left
inferior frontal cortex. Finally, successful meaning com-
position at target was accompanied by BOLD change in
the striatum and the mPFC, perhaps reflecting intrinsic
reward signaling.

3.3. Abstract rule representations in a lateral
frontoparietal network

The fMRI adaptation effect at the time of the congruent
vs incongruent target likely occurred because partici-
pants already composed the newly inferred word mean-
ing using the abstract relational structure rules when they
first encountered the primes. Indeed, RSA of congruent
prime-related multivariate activity pattern using a whole-
brain searchlight approach showed that the newly con-
structed meanings were represented in left lateralized
language-related areas (Fig. 3C), including the left inferior
frontal cortex (o, = .001, K. =109, Z__ =3.84, [-36, 25,
28]) and the angular gyrus (p < .001, K. = 167,

FWE E

Z. .. =3.70, [-44, -46, 36], Supplementary Material 6B).
The pattern of these RSA effects, at prime, overlapped
greatly with the pattern of RSA effects, computed from
target-related neural activity (predicted by the same
target-meaning model; Supplementary Material 6C).
Moreover, this left inferior frontal area overlapped greatly
with the left frontal cluster yielded by the univariate fMRI
adaptation analysis, which was the comparison between
congruent vs incongruent targets. Importantly, this prime-
related meaning representation was not captured by an
alternative meaning model which described the similari-
ties between stem meanings (e.g., “short” in “short-kla”
was more similar to “small” in “small-kla”, compared with
“happy” in “happy-kla”; Kendall's 7, . .. = 0.13; all
cluster-level ps > .541; Supplementary Material 6D). This
confirmed that the decoded target meaning represen-
tation at the primes was not a result of the semantic

\

Fig. 3. Representational similarity analysis of meaning and rule representations. (A) A distance-based meaning model

in which word meanings are arranged by their similarities. (B) A binary-coded rule model in which all the compositional
pseudo-words ending with the same affix (e.g., “-kla”) are more similar to each other, compared with words with a different
affix (e.g., “kla-”, “-ran”, or “ran-"). (C) Whole-brain searchlight RSA outcome using the meaning model. Effects are shown
from an analysis in which only order-congruent primes were included. (D) Whole-brain searchlight RSA outcome using
the rule model. Effects are shown from an analysis in which congruent and incongruent conditions were combined. For
both (C) and (D), the hue indexes the sign and size of the correlation coefficient, and the opacity indexes the magnitude
of the associated t values. Significant clusters (cluster-level corrected, FWE, p < .05) are encircled in solid contours. All
coordinates are provided in the MNI space. (E) ROI-based RSA of meaning and rule representations, extracted from the
left inferior frontal gyrus. The analysis of meaning representations included only the congruent primes (left); whereas the
analysis of rule representations included both congruent and incongruent conditions combined (middle) and separately
(right). The ROI-based RSA was performed on both anatomically defined masks of the left IFG and the hippocampus.
Hippocampal-based results is omitted in the figure due to low noise ceilings (see Supplementary Materials 6E). The gray
horizontal line (or red/green line for the plot on the right) indicates the noise ceiling of the data extracted from the ROI,
computed using a leave-one-out approach. The noise ceiling estimates the maximum performance any model could
reasonably achieve given the noise in the data. Asterisks indicate the statistical significance: **p < .001; **p < .01.
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relatedness between the target meaning and the stem
meaning. Together, this RSA demonstrated that the rep-
resentation of the novel meaning was already composed
and decodable at the time of pseudo-word primes.
Whole-brain searchlight RSA of prime-related activity
pattern (including both congruent and incongruent
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primes) revealed representations of the abstract rules in a
bilateral frontoparietal network (Fig. 3D), including dorso-
lateral prefrontal cortex (o, < .001, K. = 1639, Z _ =
4.59, [59, 7, 14]), middle temporal gyrus (o, < .001,
K.=4619,Z _ =5.48,[-54,-52, Q]), and medial prefrontal

cortex (o, < 001, K_ = 273, Z__ = 5.01, [-6, 25, 38],



X.Y. Zheng, M.M. Garvert, H.E.M. den Ouden et al.

Imaging Neuroscience, Volume 3, 2025

Supplementary Material 6B). These areas are commonly
implicated in the representation of task-state spaces and
abstract rules in working memory for goal-directed action
planning (Cole, Reynolds, et al., 2013; Cole & Schneider,
2007; Dosenbach et al., 2007; Harding et al., 2015; Nee,
2021; Spreng et al., 2010; Vaidya & Badre, 2022; Zanto &
Gazzaley, 2013).

In contrast to our hypothesis, there was no evidence
for either meaning or rule representations in the hippo-
campal formation, also not when reducing the search vol-
ume to an anatomically defined ROl (Supplementary
Material 6E).

To explore the potential difference in rule representa-
tions between the order-congruent and incongruent
primes, we performed the same analysis on the two
conditions separately. Interestingly, ROI-based RSA in
the left IFG revealed that the rule representation was
stronger for the congruent than the incongruent condi-
tions (Mean_, = 0.04, SD = 0.03; Mean, = 0.02,
SD = 0.02; Paired t(29) = 3.00, p = .005, Fig. 3E). This
was further supported by whole-brain searchlight RSA
of the congruent and incongruent conditions (Supple-
mentary materials 6F).

In sum, our results showed that the online general-
ization of abstract rules for composing novel word
meaning engaged a broad temporoparietal network
including the hippocampus, with the newly composed
words being represented in language-specific regions.
During compositional generalization, both the newly
inferred word meanings and the abstract rules could be
decoded from a lateral frontoparietal control network,
instead of the predicted medial prefrontal-hippocampal
network.

4. DISCUSSION

Our brain learns and abstracts generalizable knowledge
to make inference and adapt to novel situations (Al Roumi
et al., 2019; Behrens et al., 2018; Dehaene et al., 2022;
Frankland & Greene, 2020; Gardenfors, 2004; Liu et al.,
2019; Sablé-Meyer et al., 2022; Schwartenbeck et al.,
2023). Here, we leveraged fMRI adaptation and represen-
tational similarity analyses in the context of a new exper-
imental procedure toinvestigate the neural representations
that support this ability to compose novel word meaning
based on previously learned abstract relational structure
rules. Using fMRI adaptation, we demonstrated that
newly inferred meanings are represented in the left infe-
rior frontal cortex (IFC), a key region for constructing lin-
guistic meaning (Nevat et al., 2017; Weber et al., 2016; W.
Zhang et al., 2022). While we interpret the reduced neural
activity for order-congruent versus incongruent targets
as neural adaptation (see also Wagner et al., 1997), it is
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also possible that this difference reflects prediction error
in response to incongruent targets (see also Weber et al.,
2016). Although our current paradigm cannot distinguish
prediction error from neural adaptation (cf. Todorovic &
de Lange, 2012), both interpretations support the conclu-
sion that novel word meanings must have been com-
posed “on the fly”. Furthermore, the RSA-derived finding
that novel meaning representations were decodable from
the IFC already at prime onset reinforces the conclusion
that the IFC represents the composed meanings them-
selves rather than representing prediction error. The con-
clusion that these representations reflect the newly
composed meaning rather than the components of the
pseudo-words is supported by the finding that the neural
patterns at prime onset cannot be explained by a model
of the meaning of the pseudo-word stems. It is remark-
able that the covert products of the compositional infer-
ence process were already represented at the time of the
prime. This finding captures our generative capacity, and
the role of the inferior frontal cortex in representing con-
structed meaning.

While we observed hippocampal activity during com-
positional inference - specifically when participants
encountered incongruent words compared with congru-
ent ones, potentially reflecting greater effort to resolve
the composition challenge — we found no clear evidence
that the composed meanings themselves were repre-
sented in the hippocampus or the mPFC. This finding
contradicts our preregistered hypothesis, which pre-
dicted that relational structure-based inference and gen-
eralization would engage representations within the
medial prefrontal-hippocampal network, consistent with
findings from other cognitive domains such as vision,
memory, and planning (Baram et al., 2021; Barron et al.,
2013, 2020; Behrens et al., 2018; Bellmund et al., 2018;
Garvert et al., 2023). One possibility is that the involve-
ment of this network depends on the format of the gener-
alizable, abstract rule representations used for
composition. The medial prefrontal-hippocampal net-
work is thought to maintain task knowledge in a flexible
cognitive map, with these map-like representations sup-
porting novel shortcuts or connections that are never
experienced (Barron et al., 2020; Garvert et al., 2023;
Jacobs et al., 2013; Morton et al., 2020; Park et al., 2021;
Schuck et al., 2016; Schuck & Niv, 2019; Schwartenbeck
et al., 2023). In hindsight, the abstract rules of our task
are unlikely to be formatted in terms of such a relational
map; instead, they are more likely to be formatted as
propositional or production rules (e.g., “if ‘kla’ is affixed at
the end of a word, then it reverses the meaning of the
word”) (Vaidya & Badre, 2022).

To assess the neural locus of the abstract rule repre-
sentations, we conducted representational similarity



X.Y. Zheng, M.M. Garvert, H.E.M. den Ouden et al.

Imaging Neuroscience, Volume 3, 2025

analyses. Results revealed rule representations in a lat-
eral frontoparietal network, including the dorsolateral
prefrontal cortex (DLPFC) and lateral parietal cortex.
These regions have previously been associated with the
learning and use of abstract task representations for cog-
nitive control (Badre et al., 2010; Cole, Laurent, et al.,
2013; A. Eichenbaum et al., 2020; Ito et al., 2022; Loose
et al., 2017; Nee, 2021; Reverberi et al.,, 2012; Tomov
et al., 2018; Woolgar et al., 2011). This finding concurs
generally with recent findings from an imaging study in
which participants generalized (value-based) information
across contexts based on learned abstract relationships
that could also be conceptualized as being formatted as
production rules (“if in context A, then category A+ gives
more rewards”, Vaidya et al., 2021). These abstract pro-
duction rules were also found to be represented in a sim-
ilar frontoparietal control network, with flexible switching
between rules facilitating efficient cognitive control. It is
worth noting that while the rule model was designed to
capture abstract rule representations, it may also reflect
morpheme-based similarity driven by visual or positional
properties of the stimuli. Our design cannot fully disen-
tangle these influences from rule-based effects. That
said, such lower-level visual or form-based similarity is
typically associated with regions like the primary visual
cortex or the visual word form area, rather than higher-
order areas such as the dorsolateral prefrontal cortex,
where we observed our key effects. Therefore, while we
cannot entirely exclude lower-level contributions, our
findings mostly reflect higher-level, abstract rule repre-
sentations beyond basic stimulus properties. Neverthe-
less, the implication of the DLPFC in abstract rule
representation is a post-hoc observation that warrants
direct investigation in future research.

Notably, the brain region identified as representing
newly composed meanings, the left IFC, is anatomically
close to the DLPFC, a core area of the aforementioned
cognitive control network associated with structure rule
abstraction and novel inference (Badre et al.,, 2010;
Bartolo & Averbeck, 2021; Braver et al., 2002; Monti
et al., 2007; Morton et al., 2020; Ramawat et al., 2022;
Wallis et al., 2001). This might suggest a shared system
for linguistic and nonlinguistic generalization, with the left
hemisphere playing a more prominent role in facilitating
communication within the language network (Fiebach
et al., 2005; Hagoort, 2016). This interpretation is further
supported by our findings of left-lateralized parietal
involvement in abstract rule representations, such as the
angular gyrus, a region known to be involved in composi-
tional semantic processes (Boylan et al., 2015; Price
et al., 2015; W. Zhang et al., 2022).

To further explore neural signals associated with the
compositional process, we compared fMRI BOLD
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responses during order-congruent versus incongruent
primes. The widespread increases in activity across
temporal and parietal regions likely reflect the critical
difference between these conditions. This difference
could be driven by unsuccessful inference of meaning,
increase demands for rule application, or difficulty with
meaning generalization. However, given the design of
our study, we cannot disentangle these possibilities,
and future research will be needed to clarify the under-
lying mechanisms.

In addition, when comparing congruent versus incon-
gruent meaning compositions (both at the primes and at
the targets), we observed increased neural activity in the
striatum, a region often implicated in reward processing
(Knutson et al., 2000, 2001). This finding is surprising
because we did not provide participants with reward
feedback regarding the accuracy of their semantic judg-
ments; they were not informed which words were con-
gruent and therefore meaningful. This finding might
suggest that the process of generating meaning itself
may provide an intrinsic reward. This aligns with the idea
that internal rewards can facilitate the learning of gram-
mar and new word meanings (Bains et al., 2024; Nevat
et al., 2017; Ripollés et al., 2014; Uliman, 2016).

The observed weaker rule representation in the incon-
gruent compared to congruent primes may reflect a pro-
cess of rule switching. When participants encountered
difficulty in composing a novel meaning under the incon-
gruent rule (e.g., interpreting “kla-short” as “the young
version of short”), they might shift to applying the reverse,
congruent rule, which leads to a more interpretable out-
come. This internal rule switching/shifting could result in
a less stable representation of the assigned (incongruent)
rule in the neural signal.

In sum, we investigated the neural representations
that support novel compositional meaning inference. We
leveraged the fact that participants can infer novel, com-
positional meanings on the fly, based on previously
learned abstract rules (Tamminen et al., 2015; Zheng,
Petukhova, et al., 2024). By using a semi-artificial lan-
guage with a fully controlled and simplified compositional
rule, we were able to isolate and probe core cognitive
mechanisms underlying linguistic composition and
generalization—mechanisms that are otherwise difficult
to disentangle in naturalistic contexts. Using fMRI, we
demonstrated that abstract rule generalization for com-
posing novel meaning recruits processes and rule repre-
sentations in the frontoparietal control network—in
contrast to the predicted medial prefrontal-hippocampal
network—and that the covert mental products of the
compositional process can be decoded from the frontal
cortex at the time of composition. The obvious next
question is whether this paradigm can be leveraged to
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unravel the temporal dynamics of meaning composition.
Future studies could use MEG to explore, for example: (1)
whether word meaning representation in the left IFC
reflects the transition from the stem word to the com-
posed target word; (2) whether the representation of the
presented abstract relational structure rule shifts to its
reversed-order rule when the latter results in successful
composition.
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