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Abstract 

The ability to generalize previously learned information to novel situations is fundamental for adaptive 

behavior. When seeing the word “un-reject-able-ish” for the first time, one can quickly infer its meaning by 

generalizing the knowledge of its constituent parts and integrating them based on certain abstract structural 

rules (e.g., the sequential order of the word parts). How do we generate novel, compositional meaning? 

What are the neuro-computational mechanisms that underlie structural inference in not only meaning 

generalization but also across different cognitive domains? This efficient but also flexible inferential process 

may leverage neural mechanisms commonly studied in the nonlinguistic domains of action planning, 

relational memory and model-based reinforcement learning, including medial prefrontal-hippocampal 

circuitry. 

To address these questions, we developed a novel experimental paradigm for quantifying novel 

structural inference for the generation of word meaning. We taught participants compositional words from 

an artificial language and tested them with novel words using a semantic priming task. Results from two 

behavioral experiments showed that participants can learn and generalize structural (sequential order) rules 

for inferring novel, compositional meanings on the fly. An ongoing neuroimaging study in which we 

combine this paradigm with fMRI adaptation will unravel the neural mechanisms of meaning composition, 

allow us to test the prediction that correct compositional inference can be predicted from neural activity in a 

medial prefrontal-hippocampal network, measured during the generation of the novel word meaning.  
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1 Background 

The ability to generalize previously learned information to novel situations is fundamental for adaptive 

behavior in an uncertain world. We are good at combining linguistic “building blocks” and inferring the 

meaning of these combinations on the fly. When we see the word “un-rejectable-ish” for the first time, we 

can quickly infer its meaning by generalizing our knowledge of the constituent morphemes and integrating 

them. Relational structure plays an essential role in linguistic composition. For instance, the two sentences 

“The cat chased the mouse.” and “The mouse chased the cat.” have identical linguistic building blocks but 

different meanings. The human ability to compose complex representations from basic building blocks 

depends critically on abstract, generalizable knowledge and certainly goes beyond language (Sablé-Meyer 

et al., 2021; Schwartenbeck et al., 2021; Roumi et al., 2021), facilitating learning and problem solving in many 

cognitive domains (Behrens et al., 2018; Liu et al., 2019). Recent imaging work has shown an essential role of 

the prefrontal-hippocampal circuitry in the construction of complex visual configurations using simple 

building blocks (Schwartenbeck et al., 2021).  

  To explore the cognitive process of structural inference for meaning generalization and its neural 

codes, we have developed a novel experimental paradigm that utilizes the linguistic phenomenon of 

“affixation”, i.e., forming different words by adding morphemes at the beginning (prefix) or the end (suffix) 

of words. We taught participants artificial, compositional words with different rules of affixation, and later 

tested them on novel, compositional words that follow the same structural (i.e., sequential order) rules. 

2 Experiment 1 

We collected online behavioral data from 36 participants. In the learning phase (Figure 1), we taught them 

artificial, compositional pseudo-words consisting of a known stem (e.g., “good” in “good-kla”) and an 

unknown affix (e.g., “kla”). Crucially, the affix alters the word meaning depending on its position (e.g., “-

kla” as a suffix means “the opposite”, whereas “kla-” as a prefix means “young version”, see “KEY” in 

Figure 1). These position-dependent affix meanings lead to unique compositional meanings in different 

sequential combinations with the stems (e.g., “good-kla” means “bad”, whereas “kla-human” means 

“child”). In the testing phase, we presented participants with a new set of compositional pseudo-words (i.e., 

not presenting in the learning phase). The pseudo-words were manipulated using the same structural rules 

in the learning phase. The affixes attached to the stems can either be congruent in sequential order (e.g., 

“rich-kla”, where “-kla” means “opposite”), or incongruent in order (e.g., “kla-rich”, where “-kla” but not 

“kla-” means “opposite”), or in a totally mismatched meaning regardless of order (e.g., “rich-ran/ran-rich”, 

where neither “-ran” or “ran-” means “opposite”). We measured participants’ reaction times when they 

made semantic decisions on the target synonym word, following the prime pseudo-words in the three 

conditions (Figure 1). To ensure that participants attended to the prime words, we included on 10% of trials 

a probe question in which the meaning of the preceding two words need to be compared. As a result of 

semantic priming, we expected participants to respond faster on a target word when the preceding 

compositional word carries the same meaning. 

Results (Figure 2A) showed that participants were faster in making semantic decisions when the 

target word was primed by a congruent (β = 0.04, SE = 0.01, z = 3.97, p < .001) or incongruent (β = 0.03, SE = 

0.01, z = 2.84, p = .01) pseudo-word, compared with a mismatched word. This finding provides evidence that 

people are able to compute novel compositional meaning online. However, there was no difference in the 

priming effect between congruent vs. incongruent conditions (β = 0.01, SE = 0.01, z = 0.99, p = .58). This lack 

of an effect of congruence suggests that sequential order did not matter. Nevertheless, when explicitly asked 

whether the prime matches the target, half of the participants indicated that the congruent compositional 



primes matched the targets in meaning, whereas the incongruent primes did not (Figure 2B), suggesting 

they consider a different meaning of the same affix form based on its sequential order. The discrepancy 

between the online priming task and the offline posttest could have two reasons: (1) Participants did not 

learn well enough to make the inference process automatic; (2) Participants did not have enough time to 

process the novel prime words online. 

 

 

Figure 1. Experimental paradigm. The actual stimuli was in participants’ native language. 

 

 

 

 



Figure 2. Main findings from Experiment 1. (A) Raincloud plots of median reaction times of the semantic priming task 

across three experimental conditions. The outer shapes represent the distribution of the data over participants, the 

thick horizontal line inside the box indicates the group median, and the bottom and top of the box indicate the group-

level first and third quartiles of each condition. Each dot represents one participant. (B). Raincloud plots of 

participants’ responses on whether the prime words match the target words in meaning.  

3  Experiment 2 

The second experiment was adapted from experiment 1 in the following ways: (1) prolonged presentation of 

the prime word to ensure sufficient processing time; (2) included another block of learning (in total four). 

We also doubled the number of participants (N = 72) to ensure a well-powered between-subject comparison 

based on participants’ learning strategies, i.e., whether they took into account the sequential order rule.  

Results showed again a priming effect of the congruent (β = 0.05, SE = 0.01, z = 6.91, p < .001) or 

incongruent condition (β = 0.03, SE = 0.01, z = 3.89, p < .001) compared with the mismatch condition, 

replicating Experiment 1. Moreover, the semantic priming effect was larger following a congruent than an 

incongruent prime word (β = 0.02, SE = 0.01, z = 2.67, p = .02, Figure 3A), suggesting that the identical affix 

forms in the compositional words nonetheless lead to different compositional meaning given their different 

sequential order (i.e., pre vs. post). This supports the idea that sequential order plays an essential role in 

meaning composition. Similar to Experiment 1, more than half of the participants explicitly reported the 

incongruent primes to not match the meaning of the targets. We explored the two types of learning 

strategies by splitting the participants into two groups based on the posttest (Figure 3B): those who did not 

consider sequential order (“BLENDer”, N = 24), and those who did (“BUILDer”, N = 47). The BLENDers 

showed no priming difference between the congruent and incongruent conditions (β = 0.002, SE = 0.01, z = 

0.20, p = .978), whereas the BUILDers showed a larger priming effect of the congruent than incongruent ones 

(β = 0.03, SE = 0.01, z = 3.04, p = .007), as they could not compute the meaning of the latter (Figure 3C).  

 

Figure 3. Main findings from Experiment 2. (A) Raincloud plots of median reaction times of the semantic priming task 

across three experimental conditions. (B) Raincloud plots of participants’ responses on whether the prime words match 

the target words in meaning.  (C). Raincloud plots of median reaction times of the semantic priming task across three 



experimental conditions, split between two participant groups.  

4  Conclusion and Ongoing work 

We have developed a paradigm that allows us to quantify the ability to infer and represent novel 

compositional word meaning, based on the learning and generalization of sequential order rules. To assess 

the neural mechanisms of compositional inference and generalization, we have adapted the paradigm for 

use in an fMRI adaptation study. We will test our prediction that correct compositional inference can be 

predicted from neural activity in a medial prefrontal-hippocampal network, given the hippocampal 

function of representing learned and inferred structural relationships for inference and generalization 

(Barron et al., 2020; Behrens et al., 2018; Bellmund et al., 2018; Garvert, Dolan, & Behrens, 2017) and medial 

prefrontal cortex’s role in abstracting and generalizing across structures and constructs novel experience 

(Baram et al., 2021; Barron, Dolan, & Behrens, 2013; Garvert et al., in prep).  
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