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----------------------------------------------------------------------------------------------------- 

Response to Reviewer #1 

We thank the reviewer for their helpful feedback. We have addressed their comments below 

point by point. 

We would like to thank the reviewer for highlighting the importance of clarifying our use of the 

term “cognitive map”. To address these concerns: 

Cognitive map definition: Cognitive maps are conceptualized as domain-general internal 

models of our environment representing relational knowledge that helps us understand the world 

around us (Eichenbaum & Cohen, 2014). These maps allow for generalization and inference.  

Characteristics: Cognitive maps can be high-dimensional, with each dimension possessing an 

inherent metric. The exact metric may differ between dimensions—e.g. embodying Euclidean 

distances or resembling a city-block metric. The key feature uniting these metrics is the 

proximity of similar stimuli within this cognitive space (Gärdenfors & Zenker, 2015), symmetry 

and conformity to geometric norms, most notably betweenness and equidistance (Bellmund et 

al., 2018; Gärdenfors, 2004). These features enable straightforward computations of distances 

between any pairs of states without the need for expensive step-by-step simulations as well as 

Zheng and colleagues re-analyze a prior fMRI dataset (from what I understand, anyway, this was a 

re-analysis) to test the neural localization of temporal association vs semantic similarity relations. In 

the study, participants were exposed to a sequential transition structure among object images, 

creating temporally closer and farther relations among them. These objects were also separately 

rated for semantic similarity. Temporal and semantic distances were used to predict neural 

adaptation among image pairs. nearby but non-overlapping peaks in the medial temporal lobe were 

found to encode temporal and semantic distances. 

1 intro: some points of clarification needed 

1.1-  the idea of a 'cognitive map' seems to be a central part of the stated hypothesis and conclusion. 

However, what defines or even characterizes a map, specifically, is not stated here. As far as I can 

tell, what is investigated is simply distances in temporal relational or semantic space. Is this correct?  

E.g, - "a map of semantic relationships" -- does this just mean, semantic distances, given what was 

measured? Historically the term cognitive map has additional meaning beyond distances or 

relational links, no? Not sure why this concept needs to apply here. 
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generalization, because a property of two stimuli x and y can be inferred to be shared by any 

stimulus z falling between x and y (Bellmund et al., 2018).  

Our findings: Our observed repetition suppression signal in the hippocampus scales with 

semantic distance and a measure of the graph structure. This representation aligns with the 

defining features of a cognitive map: Relationships can be quantified in terms of a metric, this 

metric is symmetric (see also point 2.3 below) and it adheres to geometric norms. To address 

your specific query on "a map of semantic relationships": While we indeed measure semantic 

distances, the organization, relational structure, and generalizable attributes of this knowledge 

make it more than mere distances; it resembles important properties of a cognitive map.  

Nonetheless, we now use the term “map-like” throughout the manuscript as a more nuanced way 

to describe our findings. We believe that this more clearly reflects that the representation 

possesses some important, but not necessarily all, characteristics of a cognitive map.  

We also included a paragraph to clarify our definition of a cognitive map and its application to 

our findings more clearly. We believe that these clarifications and modifications enhance the 

clarity of our message. We now say:  

“The hippocampal-entorhinal system builds rich models of the world, called cognitive maps, that account 

for the relationships between locations, events, and experiences (e.g., Behrens et al., 2018; Eichenbaum & 

Cohen, 2014; Moser, Kropff, & Moser, 2008; O’Keefe & Nadel, 1978; Tolman, 1948). These maps 

capture the similarity between symmetric, high-dimensional relationships in a cognitive space, satisfying 

geometric constraints such as betweenness and equidistance (Bellmund et al., 2018; Gärdenfors, 2004). 

Abstracting and organizing relational information in this way facilitates flexible behavior, enabling 

generalization and inference.” (Introduction, page 2) 

“Specifically, we observed that repetition suppression of signals in the hippocampus scales with semantic 

distance. This representation aligns with the defining features of a cognitive map: Relationships can be 

quantified in terms of a metric, this metric is symmetric and it adheres to geometric norms (Bellmund et 

al., 2018; Gärdenfors, 2004; Gärdenfors & Zenker, 2015).” (Discussion, page 20) 

 

“Importantly, while both map-like structures localized to the hippocampal formation, the semantic map 

was located in more posterior regions of the hippocampal formation than the transition structure and thus 

anatomically distinct.” (Abstract, page 1) 
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“Notably, although both map-like structures were represented in the hippocampal-entorhinal system, the 

semantic map was localized in more posterior regions than the transition structure.” (Introduction, page 4) 

“For example, when participants acquire new knowledge about the relationships between objects by being 

exposed to experimentally generated object sequences, the hippocampal formation extracts the associated 

transition structure and stores it as map-like structural representations (Garvert et al. 2017).” (Discussion, 

page 20) 

 

References: 

Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation 

views on hippocampal function?. Neuron, 83(4), 764-770. http://dx.doi.org/10.1016/j.neuron.2014.07.032 

Gärdenfors, P., & Zenker, F. (Ed.).(2015). Applications of Conceptual Spaces: the Case for Geometric 

Knowledge Representation. Cham: Springer Verlag. https://doi.org/10.1007/978-3-319-15021-5 

Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT press. 

https://doi.org/10.7551/mitpress/2076.001.0001 

 

We have revised the sentence: 

“In Garvert et al. (2017), participants acquired new relational knowledge about everyday objects which 

were already linked by semantic connections. Here, participants were exposed to object sequences 

following a pseudo-random walk along a graph.” (Introduction, page 3) 

 

Thank you for highlighting that this sentence can be misunderstood. Participants were exposed to 

object sequences following a pseudo-random walk along a graph structure while learning to 

associate a random stimulus orientation with a button press. On the day of testing, they were 

exposed again to the object sequences and asked to report on 10% of the trials whether a gray 

patch had been presented on the preceding object.   

1.2 - p 3 first para, several unclear phrases: 

- "were already embedded in semantic structures"  -- what does that mean? 

-"Here, participants were trained on object sequences" - trained to do what? 

http://dx.doi.org/10.1016/j.neuron.2014.07.032
https://doi.org/10.1007/978-3-319-15021-5
https://doi.org/10.7551/mitpress/2076.001.0001
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We agree with the reviewer that some more clarification is needed here. We now say: 

“Here, participants were exposed to object sequences following a pseudo-random walk along a graph.” 

(Introduction, page 3) 

“On the day of training (day 1), participants were exposed to object sequences in an implicit learning task. 

The object transitions followed a pseudo-random walk along a graph (Figure 1A) which was unknown to 

the participants. This means that each object could only be followed by an immediate neighbor in the 

graph structure. Participants performed a behavioral cover task, in which they learned to associate a 

random stimulus orientation with a specific button press…In the scanning session (day 2)...In 10% of the 

fMRI trials, participants performed an unrelated cover task, reporting whether a gray patch had been 

present on the preceding object (Figure 1B).” (Methods, page 5) 

 

 

Thank you, we have revised the text: 

“...Specifically, we constructed a model of object similarity that isolates the semantic relationships 

reflecting high-level conceptual knowledge acquired from experience from the low-level perceptual 

attributes of specific objects (Rosch & Lloyd, 1978; Tversky, 1977). To this end, we matched the stimuli 

used in Garvert et al. (2017) with photographs of the same objects and asked a separate participant 

population to assess their similarity using a triplet odd-one-out task (Hebart, Zheng, Pereira, & Baker, 

2020)." (Introduction, page 3) 

 

Thank you for pointing this out, we have revised this accordingly.  

- "matched the stimuli used in Garvert et al. (2017) with photographs of the same objects"  - why not 

the exact stimuli? (I see this is explained later, but here it is confusing without any context) 

-"that precisely localized to"  -- odd phrase, "was precisely localized in"? 
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We had stated in the abstract that this paper is the result of a re-analysis of the Garvert et al. 

(2017) data. We now added very explicit statements about this also to the introduction and the 

methods sections to make this clear: 

“Here, we ask whether prior semantic knowledge about objects would be simultaneously mapped in the 

same hippocampal system which also represents knowledge about transition structure. We reanalyzed the 

functional magnetic resonance imaging (fMRI) data from Garvert et al. (2017). Specifically, we 

constructed a model of object similarity that …" (Introduction, page 3) 

“We reanalyzed the data from the fMRI study by Garvert et al. (2017), where 23 human participants (15 

male, 8 female, meanage = 23.5, SDage = 3.7, age range 18-31) were tested.…” (Methods, page 4) 

Thank you for pointing out that our manuscript would benefit from a more explicit description of 

the tasks, we agree that this is important background information that should not be omitted. We 

have now added more information about the original study (incl. description of the patch task, 

explanation of a different task used in the MRI than training, properties of trial duration and 

numbers). We hope this now provides sufficient information about the task for the readers.  

“On the day of training (day 1), participants were exposed to object sequences in an implicit learning task. 

The object transitions followed a pseudo-random walk along a graph (Figure 1A) which was unknown to 

the participants. This means that each object could only be followed by an immediate neighbor in the 

graph structure. Participants performed a behavioral cover task, in which they learned to associate a 

random stimulus orientation with a specific button press. For example, the left-facing motorcycle was 

linked to button F, while the right-facing motorcycle corresponded to button J. The graph structure was 

the same for all participants. The link distance between any pair of objects in the graph is defined as the 

minimum number of links between this pair of objects (e.g., in the example displayed in Figure 1A, the 

link distance between the rabbit and the leaf is two), which ranges from one to four. For each participant, 

2.1 Methods: many details missing or not clearly described 

2.1 some details of fMRI study unclear 

 - It should be stated clearly if this the same fMRI dataset published in Garvert et al 2017. In this 

manuscript many details of fMRI experiment are missing; they should be summarized to make sure 

everything makes sense. E.g., reference are made to the patch task but the task was never 

introduced or described. Why was a different task used in the fMRI than training,and generally, 

motivation for it? Properties of trial durations, numbers, etc would be helpful to report. 
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a subset of 12 objects was selected from a total of 31 objects used in the study, and randomly assigned to 

the 12 nodes on the graph. The objects covered a wide range of semantic categories (e.g., furniture, 

plants, body parts, animals; see figure 2B, top rows for the full set of objects used). Only one object 

within a semantic category was assigned to a participant (e.g. either banana or strawberry, but not both) 

and each participant was assigned a unique set of objects. Participants were trained for 12 blocks, with 

132 transitions in each block. 

In the scanning session (day 2), 7 out of the 12 training objects were used and presented in randomized 

order to reduce the total number of stimulus–stimulus transitions and thereby increase statistical power for 

the fMRI adaptation analysis. The transitions no longer followed the graph structure, but were pseudo-

randomized in such a way that each possible stimulus-stimulus transition occurred exactly ten times per 

block (no stimulus repetitions). To reduce the motor responses in the scanner, a different behavioral cover 

task was employed that was orthogonal to the imaging analysis of interest: In 10% of the fMRI trials, 

participants performed an unrelated cover task, reporting whether a gray patch had been present on the 

preceding object (Figure 1B). This means that participants were not required to pay active attention to the 

object identity. The fMRI session consisted of 3 blocks, with 420 transitions per block. Stimuli were 

presented for 1 s, with a jittered inter-trial interval generated from a truncated Poisson distribution with a 

mean of 2 s.” (Methods, pages 4-5) 

 

Thank you for the suggestion, we agree that the term “trained” is misleading. We now clarified 

this point as follows:  

“...participants were exposed to object sequences in an implicit learning task. The object transitions 

followed a pseudo-random walk along a graph (Figure 1A) which was unknown to the participants. This 

means that each object could only be followed by an immediate neighbor in the graph structure.” 

(Methods, page 4) 

2.2 Points of clarification needed 

 - "trained on object sequences whose transitions followed a psuedo-random walk along a graph" -- I 

can make sense of this but I am not sure all readers would. Perhaps, e.g., images of objects appeared 

one by one in sequence, and the transitions between objects were governed by a probability such 

that..." etc. I think it is especially confusing to use the term "trained" when learning is implicit and 

they are doing an unrelated cover task. 
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Together with our response to the reviewer’s comment 2.1, we have now added a more detailed 

description of the cover task to the manuscript. Specifically regarding the question of stimulus 

orientation: Participants learned to associate a random stimulus orientation with a specific button 

press. For example, the left-facing motorcycle was linked to button F, while the right-facing 

motorcycle corresponded to button J. We now say: 

“On the day of training (day 1), participants were exposed to object sequences in an implicit learning task. 

The object transitions followed a pseudo-random walk along a graph (Figure 1A) which was unknown to 

the participants. This means that each object could only be followed by an immediate neighbor in the 

graph structure. Participants performed a behavioral cover task, in which they learned to associate a 

random stimulus orientation with a specific button press. For example, the left-facing motorcycle was 

linked to button F, while the right-facing motorcycle corresponded to button J.” (Methods, page 4) 

 

Sorry for the misunderstanding. After randomly assigning objects to each participant, we 

computed the link distance for every two objects on the given graph. Indeed, we were referring 

to “any pair of objects” in the set. We have clarified it in the manuscript.  

“The graph structure was the same for all participants. The link distance between any pair of objects in 

the graph is defined as the minimum number of links between this pair of objects (e.g., in the example 

displayed in Figure 1A, the link distance between the rabbit and the leaf is two), which ranges from one to 

four.” (Methods, page 4) 

-The cover task itself was not well explained. It was written that they must "associate a random 

stimulus orientation with a button press" - this is very unclear. Which orientations of which stimuli 

were associated with what buttons? It will help to walk the reader through concretely was the task 

was. 

-"the minimum number of links between the pairs of objects" -- were objects pre arranged in 

specific pairs? Or perhaps "any pair of objects" in the set? 
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The 31 items used in the original study (Garvert et al., 2017) cover a wide range of semantic 

categories (e.g., furniture, plants, body parts, animals; see Figure 2B for the full set of items). 

The assignment of items to participants (a set of 12 items per participant) is pseudo-randomized: 

objects within the same semantic categories were not assigned to the same participant and each 

participant received a unique set of objects. Below we provide two example sets of objects 

together with their semantic categories: 

Objects - Semantic Categories (participant 

1): 

Chair - Furniture 

Umbrella - Accessory 

Basket - Container 

Lightbulb - Electrical Device 

Key - Tool 

Book - Reading Material 

Bus - Vehicle 

Flower - Plant 

Dog - Animal 

Carrot - Vegetable 

Ear - Body Part 

Blouse - Clothing 

 

Objects - Semantic Categories (participant 

2): 

Table - Furniture 

Bag - Accessory 

Bin - Container 

Lightbulb - Electrical Device 

Broom - Tool 

Book - Reading Material 

Truck - Vehicle 

Leaf - Plant 

Rabbit - Animal 

Strawberry - Fruit 

Ring - Jewelry 

Shoe - Footwear 

 

 We have clarified this part of the experiment design in the manuscript. We now say: 

“The objects covered a wide range of semantic categories (e.g., furniture, plants, body parts, animals; see 

figure 2B, top rows for the full set of objects used). Only one object within a semantic category was 

- "objects within the same semantic categories were not assigned to the same participant". It will 

help to first introduce what are the semantic categories, how many exemplars of each in the set, 

and then how they were assigned. Was it that all objects for a given subject came from different 

semantic categories? 
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assigned to a participant (e.g. either banana or strawberry, but not both) and each participant was assigned 

a unique set of objects.” (Methods, page 5) 

 

We would like to thank the reviewer for this suggestion. We believe that there are two separate 

points to address here. 

1) Transition probabilities between items. It is indeed the case that transition probabilities 

between pairs of nodes differ even for nodes that are direct neighbors on the graph, a fact 

that is not well captured by the graph structure and the corresponding adjacency matrix, 

or the link distance measure we use here. However, we think it is a challenge to reflect 

this in the depiction of the graph itself since transition probabilities are directional. For 

example, the probability of transitioning from the ear to the motorcycle is not the same as 

the probability of transitioning from the motorcycle to the ear, because in the latter case 

there are more objects to transition to (Figure 1 A). 

2.3 Distance measures for relational links vs transition probabilities. 

A major question I had was regarding how link distance relates to transition probability or even 

future discount state occupancy (as per SR). In Figure 1, it would help if the graph showed the 

transition probabilities between items.  But furthermore, it would be ideal to have a probability-

weighted distance matrix to understand how it compares with the link distance matrix. For example, 

if a 2-link path had probabilities .33 and .16, that is different than .16 and .25. It would be very 

important to understand why link distance is the right measure and how it compares to others. 

Moreover, these are quite different than values in an SR representation, which is also not reported. 

On the other hand, it was noted that "Indeed, the distance metric that best explained BOLD 

responses in Garvert et al. (2017) was “communicability”, a graph-theoretic measure capturing the 

distribution of future states in a graph that is closely related to the successor representation " -- 

could this metric be reported here?  was it used? why was this notion only raised in the discussion, 

and is it the same or different as link distance? In short it would help to have a lot more quantified 

measures of temporal distance reported in the manuscript. 
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Figure 1A. An example graph structure used to generate stimulus sequences on day 1. 

 

We would also like to refer the reviewer to an analysis that was reported in the original 

paper, where we explored the nature of the representation of the newly learnt graph 

structure in depth (Garvert et al. 2017). For example, we explicitly tested whether the 

symmetric link-distance measure or a non-symmetric shortest path measure based on 

actually experienced transitions explained our data better. We found clear evidence for a 

symmetric representation of the map: 

Analysis reported in Garvert et al. 2017:  
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“Furthermore, relationships between items arranged in a map-like structure are non-

directional. Our subjects were not constrained to experience each pair of transitions an 

equal number of times (Figure 3B). Based upon this, we could test whether the fMRI 

signal was better predicted by the true or symmetrised distance between any two objects. 

We constructed a measure of the shortest path between each pair of objects according to 

the actual number of times each transition was experienced by a subject during training 

(see ’Materials and methods’ section). When allowing this measure to compete with its 

symmetrised, and thereby non-directional, self in a linear model, it was the symmetrised 

version alone that predicted the fMRI suppression effect (Figure 3C, t(22) = 2.78, p=0.01 

and t(22) = 0.11). 

 

We would therefore maintain our conclusion that the representations we find here are 

map-like.  

2) Probability-weighted distance matrix. The differences in transition probabilities 

between pairs of nodes of course propagate especially for longer sequences along the 

graph structure. This can be captured by graph-theoretic measures we introduced in our 

previous paper such as communicability and the successor representation. Simply put, the 

communicability between two nodes in a graph captures the ease with which information 

can flow between them, taking into account not just the direct connections, but also the 

indirect connections through all possible paths. This measure considers all paths between 

nodes, exponentially discounting longer paths. 

Traditionally, communicability is computed from the unweighted adjacency matrix A of 

an unweighted graph as the (i,j)-th entry of the matrix exponential exp(A). However, it is 

equally possible to compute the same measure based on a matrix P reflecting transition 

probabilities, which could provide a more nuanced understanding of communicability in 

systems where the strength and directionality of connections (as given by transition 

probabilities) matter.  

The matrix exponential grows with the contributions of paths of increasing lengths in a 

super-linear manner. If two nodes have high communicability, it implies that there are 
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many paths (both direct and indirect) connecting them. If the communicability is low, it 

indicates that the nodes are more isolated from each other. This measure can therefore 

capture the entire structure of a graph and all possible paths in a manner similar to what 

the reviewer suggests here. For example, it can differentiate between two nodes 

connected by a single long path and two nodes connected by many short paths.  

The successor representation, on the other hand, reflects expected future state visitations 

for any given state given a transition probability matrix. A random-policy SR can be 

computed from the transition probability matrix using the equation M=(I−γT)−1 where M 

is the successor representation matrix, I is the identity matrix, T is the transition 

probability matrix and γ is the discount factor (here set to 0.85).  

The different measures (shortest path, transition probabilities, communicability and 

successor representation) capture slightly different aspects of the graph structure, as 

visualized in Figure R1: 

 

Figure R1. Different distance measures (shortest path, transition probabilities, communicability 

and successor representation) capture slightly different aspects of the graph structure 

 

However, due to the high correlations among the different distance metrics (Spearman r 

for correlations between link distance and communicability/SR > -0.9, p < 0.0001, 

Spearman r for correlation between communicability and SR = 0.97, p < 0.0001), it is 

impossible to isolate the contribution of each precise measure to the neural 

representation. Indeed, when we include communicability instead of link distance as a 

regressor in the same GLM as semantic distance, we find suprathreshold clusters in 

exactly the same region as when link distance effects are included (Figure R1), but this 

effect does not survive correction for multiple comparisons.  
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Since we explored communicability and SR measures in our previous article in depth, we 

decided not to include those analyses here. While maintaining link distance as the 

measure of the learnt graphs structure for simplicity, we toned down our statement about 

the distance metric that “explained our data best”. In addition, we added a paragraph in 

the discussion pointing out that there are other plausible graph-theoretic measures such as 

communicability and SR that might be represented neurally, but that are challenging to 

isolate. We now say: 

“It is also worth noting that there are other plausible measures that might better characterize the 

neural representation of the transition structure, which are discussed comprehensively in Garvert 

et al. (2017). In the domain of reinforcement learning, the utility of a cognitive map is greatly 

enhanced when the representation of a state not only embodies the present but is also predictive, 

encompassing a spectrum of probable future states. This concept is encapsulated in the successor 

representation (Dayan, 1993; Momennejad et al., 2017; Russek et al., 2017), which is suggested 

to be encoded by hippocampal place cells (Stachenfeld et al., 2014, 2017). From this perspective, 

hippocampal place cells are posited to encode not the immediate location of an animal, but a 

predictive array of forthcoming locations. Such a representation is advantageous for 

reinforcement learning, as it amalgamates predictive insights of future states with reward 

information, thereby facilitating the swift computation of potential navigational paths (Baram et 

al., 2017; Dayan, 1993; Momennejad et al., 2017; Russek et al., 2017). Analogous to the 

successor representation, graph theory introduces the matrix resolvent as a means to quantify 

'communicability' or the closeness between nodes. Similarly, the matrix exponential, another 

graph theory measure, computes a weighted summation over future states and exhibits versatility 

across various dimensions and contexts (Estrada & Hatano, 2008). Both the successor 

representation and these graph-theoretic measures explain the fMRI adaptation effects observed 

by Garvert et al. (2017). Nonetheless, disentangling their unique neural contributions presents a 

challenge, primarily due to the high intercorrelations among these distinct distance metrics.” 

(Discussion, pages 24-25) 
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Figure R2. Whole-brain analysis shows a decrease in fMRI adaptation with semantic distance 

(blue) and communicability (red). These two effects also form an anatomical gradient along the 

anterior-posterior axis of the hippocampal formation. Communicability - instead of link distance 

- , semantic distance and residual distance are included in the model. Figure thresholded at p 

< .01, uncorrected for visualization. 
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Estrada, E., & Hatano, N. (2008). Communicability in complex networks. Physical Review E, 

77(3), 036111. https://doi.org/10.1103/PhysRevE.77.036111 

 

Thank you for pointing out the need for further analysis regarding the variance in semantic 

distance measures across subjects. Indeed, unlike the link distance, the semantic similarity 

measure depends on the specific set of objects participants received and therefore differs across 

subjects. We agree that understanding this variance can provide insights into the detectability of 

model fits. 

Inter-subject variance: To address the difference in variance between participants, we now 

performed a Bartlett variance test on participants’ object dissimilarity measures. The results 

show that the variance across subjects is not significantly different (chi square (22) = 11.99, p 

= .958). The semantic distances used in our analysis are computed as the z-scored, shared 

variances between the object similarity measures of two datasets. The variance of semantic 

distance is also not different across participants (chi square(22) = 4.65, p = .1). The figure below 

shows the object similarities across participants and link distances which are identical for all 

participants.  

2.4 The semantic distance matrices varied more between subjects than link distances; it should be 

tested how much more variance there was in the semantic model across subjects, and within the 

models within subjects. This affects the detectability of model fits. Furthermore, what was the range 

of correlation values between semantic disntance matrices and link disatnce matrices across 

subjects? This kind of information is important in understanding why semantic distance effects were 

not seen in some expected areas. 

https://doi.org/10.1103/PhysRevE.77.036111
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Figure R3. Dissimilarity measures. (A) Object dissimilarities depend on the unique set of items 

assigned to individual participants, therefore varied slightly across participants. Each box represents one 

participant. (B) link distances range from 1-4 and are identical for all participants.  

 

Correlation between matrices: To determine the range of correlation values between semantic 

distance matrices and link distance matrices across participants, we also computed pairwise 

correlation between the link distance and semantic distance for each participant. The range of 

correlation coefficients (Spearman’s Rho) was found to be between -0.25 and 0.30 (mean = .03, 

SD = .12, t(22) = 1.04, p = .31).  

 

Figure R4. Correlation between semantic distance matrices and link distance matrices across participants. 

Each dot represents one participant. 
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Intra-subject variance: When modelling our fMRI data, we z-scored both dissimilarity 

matrices. Therefore, the standard deviation across all matrix entries within individual subjects is 

0 or close to 0.  

Relationship between matrix correlation and observed effects: To further explore how the 

correlation between semantic and link distance matrices might relate to the observed effects, we 

conducted an analysis comparing the strength of the correlation with the magnitude of effects we 

identified in our original analyses for each participant. Specifically, we computed two linear 

regressions with the correlation values (Figure R4) as the predictor and the magnitude of the 

semantic and link distance effects extracted from the ROIs (Figure 4A) as the dependent 

variable. Our findings indicate that neither the semantic distance effect (t(22) = 1.53, p = .140) 

nor the link distance effect (t(22) = 0.59, p = .560) can be explained by the correlation between 

the two distance matrices for individual participants.   

Together, we think that these analyses demonstrate that the larger variance in the semantic 

matrices does not influence the detectability of effects.  

We also reported this in the manuscript: 

“Neither the semantic distance nor the residual distance was correlated with link distance (semantic: 

Spearman’s Rho mean = .03, SD = .12, range = -.25 – .30, t22 = 1.04, p = .31; residual: Spearman’s Rho 

mean = -.03, SD = .09, range = -.22 – .15, t22 = -1.52, p = .14).” (Results, page 13) 

 

We thank the reviewer for pointing this out. Indeed, given that we applied FWE correction on the 

peak level, the final p-value is independent of the cluster forming threshold. The initial threshold 

is purely for visualization purposes. We have now corrected this in the manuscript: 

“We expected both the semantic information and the transition structure to be mapped in the hippocampal 

formation. Therefore we focused our analysis on this region ... We consider our results significant if they 

3. Results - several clarifying questions. 

3.1 Why is an initial thershold applied at the cluster level while the FWE correction is applied to 

peaks? 
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survived family-wise error (FWE) correction at the peak-level of p < .05 within this anatomically defined 

mask (small volume correction, SVC)... Activations in other brain regions were only considered if they 

survived whole-brain peak-level FWE correction at p < .05. All statistical parametric maps visualized in 

the manuscript are thresholded at p < .01 uncorrected and unmasked for illustration.” (Methods, page 10) 

 

Thank you for this suggestion, we concur that the perirhinal cortex’s significance in semantic 

representations, especially related to objects, warrants discussion.  

The entorhinal-hippocampal mask is created using Freesurfer segmentation in MNI space, 

combining bilateral hippocampus and bilateral entorhinal cortex. Due to the fine resolution of the 

entorhinal label in Freesurfer, it was further dilated by one voxel to have non-disrupted 

substructures. The perirhinal cortex is however not included in this mask, even though it is 

indeed proximate. 

A significant challenge with imaging the perirhinal cortex is its location beneath the 

hippocampal formation and adjacency to the air-brain tissue interface. This position leads to 

pronounced fMRI signal drop-out, making it very difficult to obtain reliable data. As a 

consequence, we could not examine our effects of interest in this ROI and are cautious about 

making claims regarding semantic representations in the PRC. 

In the methods section, we have now clarified our ROI definition both for the hippocampal ROI 

and the cortical ones:  

“We expected both the semantic information and the transition structure to be mapped in the hippocampal 

formation. Therefore we focused our analysis on this region. The anatomical mask is created using 

Freesurfer (Fischl, 2012) segmentation in MNI space, combining bilateral hippocampus and bilateral 

entorhinal cortex (Supplementary Material S2). ” (Methods, page 10) 

“To explore the cortical semantic representation, we performed additional SVC using two anatomically 

defined masks: the left anterior temporal lobe and the left angular gyrus, two regions previously reported 

to be important in semantic processing (Visser et al., 2010; Humphreys et al., 2021). Both masks are 

3.2  It is notable that prior work has identified semantic representations, specifically about objects, 

in perirhinal cortex. It would be crucial to cite this work and point out that PRC is very close to the 

ROI used here. Could the authors comment on how the HC-EC complex was defined, and whether it 

spanned or excluded PRC? In general, more detail about ROI definition would be helpful. 
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defined using the Harvard-Oxford cortical structural atlas with a probabilistic threshold of 30%.” 

(Methods, page 10) 

Lastly, we integrated the mention of prior work on object-specific semantic representations in 

our discussion: 

“It is also worth noting that object-specific semantic representations have been identified previously in the 

perirhinal cortex (Clarke & Tyler, 2014), a cortical region close to the hippocampal formation. However, 

due to fMRI signal drop-out in this region, we could not examine whether our effects of interest are also 

represented there.” (Discussion, page 22) 

 

We would like to thank the reviewer for their thoughtful feedback and for providing relevant 

literature to further contextualize our findings.  

4. Discussion: a few limits on interpretation 

4.1  Several factors differed between the relation types: recency of learning, kind of 

relation/distance (semantic/taxonomic vs temporal association), and whether it was explicitly 

known or implicitly known. For example it is not just that semantic knowledge is older, but it is also 

not neccesarily based on temporal continguity (e.g., taxonomic object categories). Which is mostly 

likely the driver of the localization differences? It may be worth refering to prior related findings 

comparing such factors. For example, perceptual feature information and newly learned temporal 

relations show effects in adjacent parts of lateral temporal areas, when both are explicitly known: 

Leshinskaya, A., & Thompson-Schill, S. L. (2020). Transformation of event representations along 

middle temporal gyrus. Cereb Cortex, 30(5), 3148–3166. https://doi.org/10.1167/19.10.91a 

Other work compares taxonomic vs semantic relationships in the brain: 

Mirman, D., Landrigan, J.-F., & Britt, A. E. (2017). Taxonomic and Thematic Semantic Systems. 

Psychological Bulletin, 143(5), 499–520. https://doi.org/10.1037/bul0000092 

And I am less familiar on contrasts between implicit vs explicit knowledge but it might help to refer 

to other principles of HC long-axis organization: 

Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., Grady, C., Rosenthal, C. R., 

Winocur, G., Barense, M. D., & Moscovitch, M. (2018). Multiple Scales of Representation along the 

Hippocampal Anteroposterior Axis in Humans. Current Biology, 28(13), 2129-2135.e6. 

https://doi.org/10.1016/j.cub.2018.05.016 

Perhaps there is a broader principle behind such organization across the brain. It would help if the 

authors could elaborate on what they think, based on prior literature, is the most likely driver of the 

spatial segregation they see. 
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We agree with the reviewer that the two types of knowledge structure investigated in the current 

study differ in many aspects, including the recency of learning, the nature of the 

relation/distance, and the degree to which knowledge is explicit or implicit. While it is exciting 

to see two knowledge structures that differ vastly to be encoded using the same cognitive 

mapping principle, it is also hard to isolate the driving factor behind the anatomical separability 

of the representations. Therefore,  we concur that these factors could have contributed 

individually or collectively to the observed spatial segregation.  

We now discuss these different potential explanations in depth in light of the previous literature 

to provide a more nuanced and informed discussion. We believe that integrating these prior 

findings enhance our understanding of the underlying neural mechanisms and the broader 

organizational principles at play. We now say: 

“Several previous investigations should also be mentioned here. Leshinskaya & Thompson-Schill's 

(2020) suggested that perceptual features, newly acquired associations as well as generalizable relational 

knowledge manifest in neighboring regions of the lateral temporal areas. However, in contrast to our own 

observations, the authors did not find any evidence of associative coding in medial temporal lobes or the 

hippocampus. In addition, Mirman et al. (2017) report a neural dissociation between taxonomic and 

thematic semantics across a set of studies (e.g., Davey et al., 2016; Kalénine & Buxbaum, 2016; Schwartz 

et al., 2011). These studies suggest that anterior temporal lobes (ATL) predominantly encode taxonomic 

semantic knowledge and the temporo-parietal cortex (TPC) encodes thematic semantic processing. 

However, the literature on this neural observation is by no means conclusive, and many studies, including 

our own, do not echo this ATL-TPC dissociation.  

Our findings suggest a more integrative role for the hippocampus, accommodating various types of 

relational knowledge, both taxonomic (semantic) and associative/temporal (transition structure)(Peer et al. 

2021), underscoring the dynamic and flexible nature of hippocampal codes. This is further supported by 

the anatomical gradient reminiscent of the gradient observable in the scale of hippocampal spatial codes, 

where anterior parts of the hippocampus display coarser spatial codes than posterior parts of the 

hippocampus (Strange et al. 2014, Brunec et al., 2018; Poppenk et al., 2013). This hints at broader 

organizational principles within the hippocampus.  

The anatomical separability we report could also be attributable to the temporal disparity in the 

acquisition and consolidation of semantic relationships versus newly learned relations. Semantic 

relationships, built and reinforced over a lifetime, have undergone extensive consolidation processes, 



21 
 

perhaps resulting in more stable and distinct neural representations within the hippocampus. In contrast, 

relationships acquired over a short duration, such as those from a single training session, might still be in 

the early phases of consolidation (Squire et al., 2015; Walker & Stickgold, 2004). In short, several 

features differ between the two relational structures in our study, including the recency of learning, the 

nature of the type of relational knowledge, and the degree to which knowledge is explicit or implicit. The 

observed spatial segregation in the hippocampus is likely driven by a combination of these features, 

potentially reflecting the nature of the encoded information.” (Discussion, pages 23-24) 

 

References: 

Leshinskaya, A., & Thompson-Schill, S. L. (2020). Transformation of event representations along middle 
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Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., ... & Moscovitch, M. (2018). 
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Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring 

Harbor perspectives in biology, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766 

 

Thank you for highlighting this aspect. By stating that the two knowledge structures are 

“organized in similar ways” in “the same neural system”, we mean both relational structures are 

represented in the hippocampal-entorhinal system using a cognitive mapping framework, 

strengthening the notion that cognitive mapping is a universal, domain-general organizing 

principle for relational information (Eihenbaum & Cohen, 2014). We show that not only are both 

types of relational information represented in this neural system, but they also follow the same 

geometric distance coding principles. This implies that the hippocampus might use a consistent 

framework for representing relational knowledge, regardless of the precise nature of the 

knowledge and its mode or timescale of acquisition. 

However, we recognize that while our findings suggest this commonality, they do not 

conclusively determine that both types of knowledge are organized identically. To clarify this in 

our manuscript, we've refined our statement to: 

“Specifically, we observed that repetition suppression of signals in the hippocampus scales with semantic 

distance. This representation aligns with the defining features of a cognitive map: Relationships can be 

quantified in terms of a metric, this metric is symmetric and it adheres to geometric norms (Bellmund et 

al., 2018; Gärdenfors, 2004; Gärdenfors & Zenker, 2015). Not only are both knowledge structures 

mapped in the hippocampal-entorhinal system, they also both adhere to  geometric coding principles 

whereby similar states are represented more similarly. This suggests that different types of relational 

knowledge, regardless of whether that knowledge was gathered over short durations or over a lifetime, 

might be structured within a similar cognitive mapping framework in the hippocampus.” 

 (Discussion, page 20) 

  

4.2  p 19 argues that the findings reveal that newly learned relations and prior semantic knowledge 

are "organized in similar ways".  I am not sure if this claim is warranted  - what do the authors mean 

by "organized"? What is shown is that they are represented in nearby areas. I think it is difficult to 

argue here and below on the basis of a "shared neural system" for these two relation types. By what 

criteria are two peaks in the "same neural system" and is there justification for this claim? 

https://doi.org/10.1101/cshperspect.a021766
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----------------------------------------------------------------------------------------------------- 

Response to Reviewer #2 

We would like to thank the reviewer for this positive assessment of our manuscript. We have 

addressed their comments below point by point. 

 

We thank the reviewer for bringing up this point. To address this concern, we analyzed our 

behavioral data by splitting our participants into an “old” group (age range = 32-70, 49.1 ± 10.0 

years, N = 104) and a “young” group consistent with the age group of our fMRI participants (age 

range = 20-31, 26.8 ± 2.6 years, N = 24). We computed the similarity matrix for each group 

separately, as well as for the entire cohort (i.e., the similarity measure we used in our 

manuscript). Our results show that the similarity ratings were highly consistent across the young 

and old groups and with the full sample (r=0.92, p < 0.001 for all vs. young and r=0.88, p < 

0.001 for young vs. old, Figure R5) demonstrating that similarity ratings are closely aligned 

across the age groups and the age discrepancy did not bias the results.  

We opted to use the full sample for our final analyses for a key methodological reason: in the 

young group, not every stimulus pair was sampled due to a smaller number of participants. By 

In their research, Xiaochen et al. examine the representation of objects characterized by various 

relational aspects within the hippocampal-entorhinal system. Through the reanalysis of fMRI data 

originally presented by Garvert et al., 2017, they identified distinct cognitive maps within the 

hippocampal formation. Specifically, one map emphasizes transition structures, whereas a more 

posteriorly situated map reflects semantic relations. This clear dissociation underscores the 

capability of the hippocampal-entorhinal system to construct diverse cognitive maps. 

The authors present an insightful question. Their exploration of hippocampal long-axis differences is 

timely and should resonate with those in hippocampal research. While I have noted some queries 

below, I am confident they can all be addressed. 

Major Issues: 

1. In the study conducted by the authors, the behavioral task included participants ranging in age 

from 20 to 70 years old. However, the fMRI task was limited to participants aged 18 to 31 years. This 

discrepancy in age ranges brings up concerns about potential variations in prior semantic knowledge 

across the age groups. It would be constructive if the authors could address this aspect. Do they 

consider it a limitation in their study? 
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using the full sample, we ensure that all stimulus pairs were adequately represented, thus 

providing a more reliable and comprehensive measure of semantic similarity. 

Overall, we are confident that our behavioral similarity ratings are robust and provide a valid 

measure of stimulus similarity across age ranges.   

 

Figure R5. Correlation between similarity ratings computed based on sub-groups. (A) Inter-group 

similarity consistency: This panel demonstrates the correlation between semantic similarity ratings 

derived from the entire cohort of participants and those obtained exclusively from the subgroup of young 

participants (aged 20-31). The high correlation coefficient (r=0.92, p < 0.001) indicates a strong 

alignment in semantic perceptions across the entire age spectrum, suggesting that the younger 

participants' semantic judgments are representative of the broader sample. (B) Cross-age comparison of 

similarity judgments: This panel presents the correlation between the semantic similarity ratings provided 

by the old (aged 32-70) versus the young participants (aged 20-31). The correlation (r=0.88, p < 0.001) 

underscores a substantial degree of agreement in semantic assessments between the two age cohorts, 

despite the inherent variability in experiential background and potential age-related cognitive changes. 

 

2. In the study, on page 9, the authors touch upon the notion of semantic representation at the 

cortical level. Yet, this concept was not introduced in the introduction. I am left wondering if this 

analysis was a part of the original plan or if it emerged as a post-hoc investigation. The clarity of the 

study would be enhanced if the authors integrated details about the semantic representation right 

from the introduction. 



25 
 

Thank you for raising this point. Our primary objective was to investigate whether the 

hippocampal formation codes semantic relationship simultaneously with the learned transition 

structure, in line with the notion of a domain-general relational code in the hippocampal 

formation (Eichenbaum & Cohen, 2014). Notably, prior research has underscored the 

representation of semantic relationships at both hippocampal and cortical levels. In light of this, 

while our main emphasis was on the hippocampal formation, we believed it was complementary 

to also touch upon known cortical semantic areas. 

To provide readers with a holistic understanding from the outset, we have revised our 

introduction: 

“In this situation, besides the newly learned transition structure between objects, participants can be 

assumed to have explicit knowledge about the semantic relationships between the same objects (e.g., 

rabbit and dog are both animals). Previous research has provided evidence that semantic relationships are 

represented in the hippocampus (Pacheco Estefan et al., 2021; Romero, Barense, & Moscovitch, 2019; 

Solomon et al., 2019) but also across various cortical regions (Bracci et al., 2015; Charest et al., 2014; 

Clarke & Tyler, 2014; Price et al., 2015; Huth et al., 2016; Frisby et al., 2023)...Here, we ask whether 

prior semantic knowledge about objects would be simultaneously mapped in the same hippocampal 

system which also represents knowledge about transition structure.” (Introduction, page 3) 

 

We believe that this is a misunderstanding and apologize for not being clear. We have used a 

single, bilateral entorhinal-hippocampal mask for the SVC. Therefore, no adjustment is needed 

for the significance threshold. 

We have revised our manuscript to avoid any ambiguity. In relation to R1’s comment 3.2, we 

have also added information about the bilateral entorhinal-hippocampal mask we used: 

“Therefore, we focused our analysis on this region. The anatomical mask is created using Freesurfer 

(Fischl, 2012) segmentation in MNI space, combining bilateral hippocampus and bilateral entorhinal 

3. In the research presented by the authors, tests were conducted on both hemispheres. Notably, 

with corrections made at .05 for each side of the contrast, there is a potential to double the 

familywise error rate. It might be advisable for the authors to consider adjusting the significance 

threshold to p < .025 for each test to address this concern. 
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cortex (Supplementary Material S2). We consider our results significant if they survived family-wise 

error (FWE) correction at the peak-level of p < .05 within this anatomically defined mask (small volume 

correction, SVC).” (Methods, page 10) 

“The fMRI adaptation analysis showed a cluster bilaterally in the entorhinal cortex (Figure 3A; FWE 

corrected at peak level, peak t22 = 4.44, p = .042, [-18, -19, -25]). ” 

 (Results, page 15) 

“Critically, we also observed a semantic distance effect in the bilateral hippocampus (Figure 3B; peak t22 

= 4.69, p = .028, [24, -31, -10]).” (Results, page 15) 

 

We thank the reviewer for referring us to this work. Indeed, our result of the anterior-posterior 

gradient (depicted in Figure 4C, also included below) is highly in line with the long-axis 

hippocampal specialization defined in Poppenk et al. (2013, “we propose that foci at or anterior 

to y = −21 mm in MNI space may be regarded as falling in the aHPC”). Especially in the right 

hippocampus, we find that this coordinate nicely divides the hippocampus into an anterior region 

mostly representing the transition structure and a posterior region mostly representing the 

semantic similarities. 

We have added more clarification in the manuscript about this anterior-posterior division: 

“These analyses demonstrate that the semantic similarity effect is localized in more posterior regions of 

the hippocampal formation, whereas the transition structure effect resides in more anterior regions. This 

difference, found in both hemispheres, suggests the existence of a posterior-anterior gradient along the 

hippocampal long axis (Poppenk et al., 2013). This effect is particularly pronounced in the right 

hemisphere where peaks do not overlap.” (Results, page 17) 

“Notably, we found an anatomical gradient along the anterior-posterior axis of the hippocampus (Poppenk 

et al., 2013; Strange et al. 2014), with the graph structure represented in more anterior parts of the 

hippocampal formation and the semantic map in more posterior parts.” (Discussion, page 22) 

4. In the paper, the authors characterize some results as being more posterior. Yet, the distinction of 

the posterior portion of the hippocampus has been established, for instance, by Poppenk et al., 

2013. It would be beneficial if the authors could provide clarity on this distinction, especially since a 

growing body of literature emphasizes this dissociation. 
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Figure 4C. Visualization of response gradient along the hippocampal long axis. In both the left and the 

right hippocampus, the semantic distance peaks at more posterior locations compared to the link distance. 

Reference: 

Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the 

human hippocampus. Trends in cognitive sciences, 17(5), 230-240. 

https://doi.org/10.1016/j.tics.2013.03.005 

 

We agree with the reviewer that it can be both: a gradient along the hippocampus as we 

described in Figure 4B and 4C, or alternatively, two functionally dissociated clusters as we tried 

5. In their findings, the authors describe the results as a 'gradient.' I wonder if it might be more 

correct to label it as a dissociation of functionality? 

https://doi.org/10.1016/j.tics.2013.03.005
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to depict in Figure 4A. Whether a dissociation or a gradient is a more accurate depiction has 

important implications for our understanding of hippocampus codes and their role in cognition. 

However, due to the spatially correlated nature of fMRI data, it is unfortunately difficult to 

arbitrate between these two possibilities.  

We now discuss this possibility explicitly in the Discussion: 

“Notably, we found an anatomical gradient along the anterior-posterior axis of the hippocampus (Poppenk 

et al., 2013; Strange et al. 2014), with the graph structure represented in more anterior parts of the 

hippocampal formation and the semantic map in more posterior parts. Alternatively, this could also be 

viewed as two functionally dissociated clusters, with the cluster residing in the entorhinal cortex encoding 

statistical information about transition structures and the cluster in hippocampus encoding semantic 

similarities between specific objects. Distinct functional clusters would suggest more specialized 

processing within the hippocampus, suggesting that different types of knowledge are more rigidly 

localized, perhaps facilitating categorization of information for more systematic retrieval. A gradient on 

the other hand suggests a more integrated and potentially overlapping functionality within the 

hippocampus, perhaps facilitating processing in ambiguous situations and retrieval of information in 

context-rich situations. Due to spatial correlations inherent to fMRI data, it is not possible to completely 

disentangle a gradient from two separable clusters. Future studies, potentially employing higher-

resolution fMRI or intracranial recordings, can provide more definitive answers.  

In either case, the anatomical segregation of the two maps may reflect differences in the nature of the 

underlying knowledge structures (Peer et al. 2021). The semantic relationships may reflect taxonomic 

knowledge derived from shared features and properties between objects that participants formed over 

their lifetimes. The transition structure on the other hand could stem from recent associative learning...” 

(Discussion, pages 22-23) 

 

Minor Issues: 

1. Some participants were assigned to perform 1460 trials, while others only completed 20 trials for 

the triplet odd-one-out task. It would be informative if the authors could share the statistics, such as 

the standard deviation (SD) for the number of trials and reaction time (RT). Given this significant 

disparity in trial counts, I am curious if the authors considered the potential influence of participant 

motivation on the results, especially in light of possible fatigue from a high number of trials. 
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We thank the reviewer for this suggestion. Participants engaged in a variable number of trials, 

ranging from a minimum of 20 to a maximum of 1460. The median number of trials per 

participant was 50, with a 25th percentile at 20 trials and a 75th percentile at 145 trials. Below 

we show the number of trials each participant performed in the odd-one-out task (Figure R6A). 

The distribution is heavily right-skewed, indicating that a large proportion of participants 

completed a relatively small number of trials, while a small minority completed a large number 

of trials.  

To assess the potential implications of this distribution more systematically, we ran an analysis 

where we computed the resulting similarity matrix by including only up to the first X trials of 

each participant. The objective was to discern any potential influences such as wavering 

participant motivation or increasing fatigue over trials. Our result shows that the reduced matrix 

converges to really high similarity with the full matrix very quickly (Figure R6B). Therefore, we 

conclude that our resulting semantic matrix remains rather unaffected by the different number of 

trials participants performed in the task. In light of these findings, we are confident that our 

results remain robust despite the inherent disparities in trial counts among participants. 

 

Figure R6. Distribution and impact of trials per participant. (A) Distribution of the maximum number 

of trials performed by each participant.(B) Correlation analysis showing that when considering a reduced 

number of trials per participant, the similarity matrix rapidly approaches high congruence with the matrix 

derived from the full set of trials. 
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Regarding the influence of fatigue and motivation: We believe that by providing participants 

with the opportunity to leave the study at any point at their discretion, we actually reduced 

problems with loss of motivation and fatigue often influencing results in long experiments.  

To test engagement and responsiveness during the experiment, we analyzed participants' average 

response time (RT) over trials. As trials progressed, we observed a decrease in response times 

that stabilized around trial 400 (Figure R7A, Spearman r = -0.59, p < 0.001). This might either 

suggest that over time response times decreased, or alternatively that slower participants decided 

to complete fewer trials. The second hypothesis is confirmed by a negative correlation between 

average response times and total number of completed trials per participant (Figure R7B, 

Spearman r = -0.21, p = 0.02).  

This suggests that participants who experienced a loss of motivation or fatigue as indicated by 

long response times terminated the experiment early and only highly motivated participants kept 

going for many trials.  

We tried to exclude trials where response times increase at a certain threshold (Figure R7C). 

Again, it did not significantly influence similarity ratings even for a relatively short threshold (ie 

2 seconds, which excludes a large portion of the data). This confirms our above observation that 

similarity measures were robust and reliable. 

 

Figure R7. Analysis of response times (RT) in the odd-one-out task. (A) Average RT (in seconds) 

plotted against trial number, showing variability in participant response times. The shading indicates the 

standard error of the mean. The data is binned, size of each bin = 20 trials. (B) Scatter plot presenting the 
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relationship between average RT (in seconds) and the total number of completed trials for individual 

participants. (C) Illustration of the similarity between full and reduced matrices as a function of the 

maximum RT (in seconds) included in the analysis (green) as well as proportion of included data relative 

to the full dataset (black). 

 

We have now added information about the distribution of the number of trials participants 

completed as well as their response times to the manuscript. More detailed information about 

these analyses was added to the Supplementary Materials.  

“Participants engaged in a variable number of trials, ranging from a minimum of 20 to a maximum of 

1460 (median = 50, 25th percentile = 20, 75th percentile = 145), with a median RT of 2221 ms 

(Supplementary Material S1).” (Methods, page 7) 

 

We thank the reviewer for pointing it out. We have now fixed the cut off. The figure is also 

included here: 

2. On page 12, there seems to be an issue with Figure 2, as it appears to be cut off. 



32 
 

 

Figure 2. Semantic distance constructed using the triplet odd-one-out task. 

 

We thank the reviewer for pointing it out. We have now fixed both references.  

3. In reviewing the manuscript, I noticed that although both the 2020 and 2022 papers by 

Whittington et al. are listed in the references, only the 2020 publication is cited within the text. Also, 

the work by Bedney et al., 2008 seems to be absent from the reference list. 
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We opted for visualization using an uncorrected threshold, because we believe it is important to 

provide the full picture to the readers. Nevertheless, we agree that aligning the visualization and 

the statistical outcome is also essential. We now present updated figures (Figure 3 and Figure 4) 

as full-brain results using an uncorrected threshold, with significant voxels clearly highlighted. 

We include both figures below.    

 

Figure 3. Transition structure and semantic similarities are represented in the hippocampal-

entorhinal system. (A) Whole-brain analysis showing a decrease in fMRI adaptation with link distance in 

the hippocampal formation, when link distance, semantic distance and residual distance are included in the 

model. (B) Whole-brain analysis showing a decrease in fMRI adaptation with semantic distance in the 

4. In the provided figure, the authors have opted for an uncorrected threshold for visualization. 

However, I feel it would be more aligned with best practices to present the actual results, allowing 

for a transparent depiction of the findings. 
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hippocampal formation, when link distance, semantic distance and residual distance are included in the 

model. Both (A) and (B) are thresholded at p < .01, uncorrected for visualization. The clusters containing 

voxels  surviving correction for multiple comparisons (FWE, p < .05) are highlighted in solid black lines. 
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Figure 4. Anatomical localization of transition structure and semantic similarities. (A) Left: Link 

distance (red) and semantic distance (blue) are represented in non-overlapping clusters (thresholded at p 

< .01, uncorrected). Two ROIs were defined based on the link distance effect (in red) and the semantic 

distance effect (in blue, both ROIs highlighted in solid lines) and included voxels exceeding a cluster-

defining threshold of p < .01, uncorrected). Right: boxplot of the parameter estimates for the link distance 

and semantic distance effects extracted from these two ROIs. The thick horizontal line inside the box 

indicates the median, and the bottom and top of the box indicate the first and third quartiles of each 

condition. Each dot represents one participant. The plot is for visualization only, since the contrast used for 

defining the ROIs is not independent from the interaction effect of interest here. (B) Anatomical location 

where the link distance is represented more strongly (red) versus where the semantic distance is represented 

more strongly (blue). The analysis is restricted to the hippocampal formation (incl. hippocampus and 

entorhinal cortex). (C) Visualization of response gradient along the hippocampal long axis. In both the left 

and the right hippocampus, the semantic distance peaks at more posterior locations compared to the link 

distance.  

 

We thank the reviewer for their suggestions. Indeed, we argue that “Participants were not even 

required to pay attention to the objects, as they only had to attend to the presence of a grey patch 

on the screen” given the cover task. We have added more detailed descriptions of the cover task 

to the Methods.  

“In the scanning session (day 2) …To reduce the motor responses in the scanner, a different behavioral 

cover task was employed that was orthogonal to the imaging analysis of interest: In 10% of the fMRI 

trials, participants performed an unrelated cover task, reporting whether a gray patch had been present on 

the preceding object (Figure 1B). This means that participants were not required to pay active attention to 

the object identity.” (Methods, page 5) 

 

5. On page 21, there is a mention that the results were found without active attention. It would be 

essential for the authors to prominently address this point in the methods section for clarity. 


